• Title/Summary/Keyword: Dielectric ceramics

Search Result 1,188, Processing Time 0.023 seconds

A Study on Low-Temperature Sintering of Microwave Dielectric Ceramics Based on $(Zn_{0.8}Mg_{0.2})TiO_3$ ($(Zn_{0.8}Mg_{0.2})TiO_3$계 마이크로파용 유전체 세라믹의 저온소결에 관한 연구)

  • Sim, Woo-Sung;Bang, Jae-Cheol;Lee, Kyoung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.561-565
    • /
    • 2002
  • The effects of sintering additives such as $Bi_2O_3$ and $V_2O_5$ on the microwave dielectric and sintering properties of (Zn, Mg)$TiO_3$ system were investigated. Highly dense samples were obtained for $(Zn_{0.8}Mg_{0.2})TiO_3$ at the sintering temperature range of $870{\sim}900^{\circ}C$ with $Bi_2O_3$ and $V_2O_5$ additions of <1wt.%, respectively. The microwave dielectric properties of $(Zn_{0.8}Mg_{0.2})TiO_3$ with 0.45 wt.% $Bi_2O_3$ and 0.55 wt.% $V_2O_5$ sintered at $900^{\circ}C$ were as follows: $Q{\times}f_o$=56,800 GHz, ${\varepsilon}_r$=22, and ${\tau}_f=-53ppm/^{\circ}C$. In order to improve temperature coefficient of resonant frequency, $TiO_2$ was added to the above system. The optimum amount of $TiO_2$ was 15 mol.% when sintered at $870^{\circ}C$, at which we could obtain following results: $Q{\times}f_o$ = 32,800 GHz, ${\varepsilon}_r$ = 26, and $\tau_f=0ppm/^{\circ}C$.

  • PDF

Dielectric and Pyroelectric Properties for 0.65PbMg1/3Ta2/3)O3-0.35PbTiO3 Solid Solution Modified with Ag2O (Ag2O가 첨가된 0.65PbMg1/3Ta2/3)O3-0.35PbTiO3 고용체의 유전, 초전 특성)

  • Kim, G.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.442-447
    • /
    • 2008
  • Ferroelectric samples of the 0.65Pb$(Mg_{1/3}Ta_{2/3})O_3-0.35PbTiO_3$ modified with $Ag_2O$ were prepared by sintering at $1200^{\circ}C$ for 4 h. The fractured surface of sintered pellets were examined by scanning electron microscopy(SEM). The dielectric constant, loss, and pyroelectric coefficient of the ceramics samples were determined. The dielectric and pyroelectric properties could be improved with the addition of small amount of $Ag_2O$ up to 0.2 mol%. The dielectric and pyroelectirc peak temperatures are continuously shifted to lower temperature with addition of small amounts of $Ag_2O$.

Microwave Dielectric Properties of $(Na_{1/2}{\;}La_{1/2})TiO_3$ Caramics ($(Na_{1/2}{\;}La_{1/2})TiO_3$ 세라믹스의 고주파 유전특성)

  • Yun, Jung-Rag;Hong, Suk-Kyung;Kim, Kyung-Yong
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.476-481
    • /
    • 1993
  • Microwave dielectric properties of $(Na_{1/2}{\;}La_{1/2})TiO_3$ (NLT) ceramics which is an A site complex perovskite structure are investigated. Dense sintered bodies are obtained when calcined at $1000^{\circ}C$ for 4h and then sintered in the temperature range between $1350^{\circ}{\;}and{\;}1450^{\circ}C$. NLT shows the bulk density of $4.95g/\textrm{cm}^3$, relative density of 96.4%, and a simple cubic structure with lattice constant(a) of 3.873$\AA$. Dielectric Constant(${\varepsilon}_r$) and quality factor Q increase as bulk density and average grain size increase respectively. NLT has the dielectric ${\varepsilon}_r=125$, Q=2842(fo=3 GHz), ${\tau}_f=465{\;}ppm/^{\circ}C$ when sintered at $1400^{\circ}C$ for 4h.

  • PDF

The Effect of NiO and $MnO_2$ Addition on the Dielectric Piezoelectric and Polarization-Reversal Properties of PLZT (NiO와 $MnO_2$ 의 첨가가 PLZT의 유전특성과 압전특성 및 분극반전특성에 미치는 효과)

  • 조경익;주웅길;고경신
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.4
    • /
    • pp.315-323
    • /
    • 1983
  • Effect of NiO and $MnO_2$ addtivies on the dielectric piezoelectrics and polarization-reversal properties of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ ceramics have been investigated. The specimens were prepared by the mixed oxide techni-que and atmosphere sintering method. The room temperature X-ray diffraction studies show that perfect perovskite solution with tetragonal structure was obtained from PLZT and its additives. The dielectric constant and dissipation factor decreased with the addition of both NiO and $MnO_2$ The Curie of Curie temperature was not observed but they displayed broadened maxima. The planar coupling factor was improved by addition of NiO and also increased with increasing sintering time carried out at 105$0^{\circ}C$ Addition of $MnO_2$ yielded a markedly high mechanical quality factor. The space-charge field decreased with the addition of NiO but increased with the addition of $MnO_2$ The planar coupling factor and space-charge field showed same dependence on the additivies. The tetragonality Curie temperature and planar coupling factor of $(Pb_{0.936} La_{0.064})$$(Zr_{0.60}Ti_{0.40})O_3$ were higher than those of $(Pb_{0.936} La_{0.064})$$(Zr_{0.568}NU_{0.032}Ti_{0.40})_{0.984}O_3$ but the grain size lattic parameter dielectric constant dissipation factor mechanical quality factor and space-charge field of the former were lower than those of the latter.

  • PDF

Dielectric and Piezoelectric Properties of PMW-PNN-PZT System Ceramics (PMW-PNN-PZT계 세라믹스의 유전및 압전특성)

  • 윤광희;류주현;윤현상;박창엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.214-219
    • /
    • 2000
  • In this paper the structural dielectric and piezoelectric properties of Pb[(M $g_{1}$2// $W_{1}$2/)$_{x}$-(N $i_{1}$3//N $b_{2}$3/)$_{0.15-x-(Zr_{0.5})}$ $Ti_{0.5}$)$_{0.85}$$O_3$ (x=0.0~0.10) ceramic were investigated with the substitution of Pb(M $g_{1}$2// $W_{1}$2/) $O_3$. According to the substitution of Pb(M $g_{1}$2//W/1/2/) $O_3$ curie temperatures were slightly decrease due to the decrease of the tetrag-onality of crystal structure and coercive fields were decreased. Up to the substitution of Pb(M $g_{1}$2// $W_{1}$2/) $O_3$ 3mol%,remnant polarization dielectric constant piezoelectric constant were increased. Dielectric constant and electro-mechanical coupling factor( $k_{p}$, $k_{31}$ ) were appeared the highest value of 2230, 0.64, and 0.38 and piezoelectric constant( $d_{33}$ , $d_{31}$ ) was the largest value of 418, 202($\times$10$^{-12}$ /C/N), respectively, when the substitution amount of Pb(M $g_{1}$2// $W_{1}$2/N) respectively, when the substitution amount of Pb(M $g_{1}$2// $W_{1}$2/) $O_3$ was 3mol%.s 3mol%.%.

  • PDF

A Study on Microwave Dielectric Properties of Low-Temperature Sintered (Zn0.8Mg0.2)TiO3 Ceramics (저온소결 (Zn0.8Mg0.2)TiO3 세라믹의 마이크로파 유전특성에 관한 연구)

  • 방재철;심우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.604-610
    • /
    • 2003
  • The effects of sintering additives such as B $i_2$ $O_3$ and $V_2$ $O_{5}$ on the microwave dielectric and sintering properties of (Z $n_1$$_{-xM}$ $g_{x}$)Ti $O_3$ system were investigated. Highly dense samples were obtained for (Z $n_{0.8}$M $g_{0.2}$)Ti $O_3$ at the sintering temperature range of 870~90$0^{\circ}C$ with B $i_2$ $O_3$ and $V_2$ $O_{5}$ additions of 〈1 wt.%, respectively. The microwave dielectric properties of (Z $n_{0.8}$M $g_{0.2}$)Ti $O_3$ with 0.45 wt.%B $i_2$ $O_3$ and 0.55 wt.% $V_2$ $O_{5}$ sintered at 90$0^{\circ}C$ were as follows : Q$\times$ $f_{o}$ = 50,800 GHz, $\varepsilon$$_{r}$ = 22, and $\tau$$_{f}$ = -53 ppm/$^{\circ}C$. In order to improve temperature coefficient of resonant frequency, Ti $O_2$ was added to the above system. The optimum amount of Ti $O_2$ was 15 moi.% when sintered at 87$0^{\circ}C$, at which we could obtain following results: Q$\times$ $f_{o}$ = 32,800 GHz, $\varepsilon$$_{r}$ = 26, and$\tau$$_{f}$ = 0 ppm/$^{\circ}C$.EX>.EX>.EX>.EX>.EX>.EX>.EX>.

A Study on Low-temperature Sintering of Microwave Dielectric Ceramics Based on ZnTiO3 (ZnTiO3계 마이크로파용 유전체 세라믹스의 저온소결에 관한 연구)

  • 이지형;방재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • The effects of the sintering additives such as B $i_2$ $O_3$ and $V_2$ $O_{5}$ on the microwave dielectric and sintering properties of ZnTi $O_3$ system were investigated. Highly dense samples were obtained for ZnTi $O_3$ at the sintering temperature range of 870~90$0^{\circ}C$ with B $i_2$ $O_3$ and $V_2$ $O_{5}$ additions of <1 wt.%, respectively. The microwave dielectric properties of ZnTi $O_3$ with 0.6 wt.% B $i_2$ $O_3$ and 0.5 wt.% $V_2$ $O_{5}$ were as follows: Qx $f_{o}$ = 48,400 GHz, $\varepsilon$$_{r}$= 22, and $\tau$$_{f}$ = -43 ppm/$^{\circ}C$. In order to improve temperature coefficient of resonant frequency, Ti $O_2$ was added to the abode system. The optimum amount of Ti $O_2$was 15 mol.% when sintered at 87$0^{\circ}C$, at which Ive could obtain following results: Qx $f_{O}$ = 44,700GHz, $\varepsilon$$_{r}$ = 26, and $\tau$$_{f}$ = 0 PPm/$^{\circ}C$.>.EX>.>.>.EX>.>.>.

Low Temperature Sintering and Microwave Properties in (Mg0.93Ca0.07)TiO3 Ceramics ((Mg0.93Ca0.07)TiO3 세라믹스의 저온소결과 마이크로파 유전특성)

  • Shin, Dong-Soon;Choi, Young-Jin;Park, Jae-Gwan;Park, Jae-Hwan;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.598-603
    • /
    • 2002
  • The effects of alumine borosilicate glass composition on the densification and the microwave properties of (M $g_{0.93}$C $a_{0.07}$)Ti $O_3$ ceramics were studied. As the amount of glass increase, the density of ceramics increases and grain growth enhances. When 20 ~30 wt% of glass added, it was densified to over 95% of (M $g_{0.93}$C $a_{0.07}$)Ti $O_3$ theoretical density. (M $g_{0.93}$C $a_{0.07}$)Ti $O_3$ ceramic sintered at 95$0^{\circ}C$ exhibits dielectric constants of 15~16, quality factor of 8000 and temperature coefficient of resonant frequency of -45 ppm/$^{\circ}C$ by adding 20 wt% alumine borosilicate glass.

Electrical Properties of 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE Composites (스마트 페인트 센서용 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23)/PVDF-TrFE 복합소재 제조 및 전기적 특성에 관한 연구)

  • Sung Jae Hyoung;Eun Seo Kang;Yubin Kang;Chae Ryeong Kim;Chang Won Ahn;Byeong Woo Kim;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.433-438
    • /
    • 2024
  • Piezoelectric ceramics play an important role in various electronic applications. However, traditional ceramics are difficult to be used in some complicated structures, due to their low flexibility and high brittleness. To solve this problem, this study prepared and investigated ceramic/polymer composites that can utilize a good flexibility of polymers. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and 0.77(Bi1/2Na1/2)TiO3-0.23SrTiO3 (BNST23) ceramics were selected to fabricate the composites. Ceramic/polymer composites were prepared using various volume fractions of BNST23 ceramics. The distribution of piezoceramic particles in BNST23/PVDF-TrFE composites was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The dielectric and piezoelectric properties of the composites were significantly influenced by the volume fraction of the piezoelectric ceramics. As a result, the highest piezoelectric constant (d33) of 56 pC/N was obtained in a composites with 70% volume fraction of BNST23 ceramics. Accordingly, it is expected that BNST23/PVDF-TrFE composites can be applied to various sensor applications.

Microwave Dielectric Characteristics of the $xMgTiO_3$(1-x) ($Na_{1/2}Ln_{1/2}$) $TiO_3$(Ln = La, Pr, Nd, Sm)Systems ($xMgTiO_3$(1-x) ($Na_{1/2}Ln_{1/2}$) $TiO_3$(Ln = La, Pr, Nd, Sm)의 초고주파 유전특성에 관한 연구)

  • Kim, Duck-Hwan;Lim, Sang-Kyu;An, Chul
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.51-59
    • /
    • 1998
  • ($Na_{1/2}Ln_{1/2}$)$TiO_3$ceramics have a high relative dielectric constant and a positive temperature coefficient of resonant frequency ($\tau_f$)(where Ln represents a lanthanide: $La^{+3}$, $Pr^{+3}$, $Nd^{+3}$ and $Sm^{+3}$). On the other hand, $MgTiO_3$ ceramic has a high Qf value and a negative temperature coefficient. So We have investigated the microwave dielectric properties of $xMgTiO_3$-(1-x) ($Na_{1/2}Ln_{1/2}$)$TiO_3$. In these systems, there are no clues on solid-solution and secondary phase. There are mixed phases with $MgTiO_3$and ($Na_{1/2}Ln_{1/2}$)$TiO_3$ phases. Its dielectric characteristics (Qf, temperature coefficient and dielectric constant) are intermediate between ($Na_{1/2}Ln_{1/2}$)$TiO_3$ and $MgTiO_3$ and are predictable by the logarithmic mixing rule. The dielectric ceramic compositions temperature coefficient each approximates to zero at Ln=La, x=0.9, Ln=Pr, x=0.87, and Ln=Nd, x=0.84. At this time, there are Qf values in the range of 55,000 to 28,00GHz and relative dielectric constants in the range of 22 to 25.

  • PDF