• Title/Summary/Keyword: Die-Face Shape

Search Result 12, Processing Time 0.026 seconds

Efficient modeling of die-face shapes for stamping automobile outer panels (차체 판넬의 가공 제작을 위한 금형형상의 효율적 모델링)

  • 박종천;이건우;전기찬
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.96-110
    • /
    • 1993
  • A procedure has been developed so that a die-face for stamping automobile outer panels can be design and modelled efficiently. The procedure is composed of four parts each of which corresponds to modeling major components of a die-face, i.e. tipped product, blankholder, draw beads, and step draw. The modeling techniques developed specifically for die-face design enable a designer to generate the shape of a die-face quickly with the minimum input, and the resulting models can be used in FEM analysis and NC tool path generation. This will lead to the reductions in lead time and manhours required for the design and manufacture of the stamping dies.

  • PDF

Analysis-based Die Face Design for the Improvement of Surface Quality for a Heat Protect Panel of an Automobile (차량용 열차단판의 면품질 개선을 위한 성형해석 기반 금형면 설계)

  • Kim, K.P.;Kim, S.H.;Lee, D.G.;Jang, K.C.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.278-283
    • /
    • 2008
  • This paper concerns the die face design for a heat protect panel aided by the finite element forming analysis in order to eliminate the surface defect and to improve the surface quality. The CAE procedure of the stamping process is introduced in order to reveal the reason of surface inferiorities and to improve surface quality. Complicated shape of the product induces the surface inferiorities such as wrinkling due to the insufficient restraining force of the forming blank and the non-uniform contact of the blank with the tools. This paper proposes a new guideline for the die design which includes the modification of tool shapes and addition of the draw-beads on the tool surface for ensuring the increased the restraining force with the uniform contact condition. The effectiveness of the proposed design is verified by the forming analysis and is confirmed by the tryout operation in the press shop. The analysis and test results show that the modified process parameters such as tool shapes and draw-beads can reduce the tendency of wrinkling and improve surface quality.

A Study on the Optimization of Press Forming of Aluminum Door Hinge Face Parts in Automobiles (자동차 바디용 알루미늄 도어 힌지 페이스 부품의 프레스 성형 최적화에 관한 연구)

  • Seok-Joong Kim;Min-Jun Kim;Won-il Choi;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • The research direction of the automobile industry worldwide is speeding up research to improve fuel efficiency through weight reduction as the weight of automobiles increases due to environmental problems, convenience demands, and safety problems. As a way to solve weight reduction, there is a method of improving mechanical properties by improving the development and manufacturing method of lightweight materials with replaceable mechanical properties. Therefore, research on the molding and processing technology of aluminum, which is a lightweight material, is being actively conducted. In this study, aluminum material was applied. By using Autoform S/W, a press forming analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. In this study, aluminum material was applied. By using Autoform S/W, a press molding analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. The optimized results were confirmed by comparative analysis of formability and Spring Back. As a result of the experiment, it was possible to confirm the result value of the Spring Back of the final product according to the tensile change of the material.

Design of RTM molds for CFRP by carbon fiber draping and resin flow simulation (탄소섬유 드레이핑 및 수지 유동 해석을 통한 CFRP 제조용 RTM 금형 설계)

  • Choi, Gwang Mook;Chae, Hong Jun
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This paper presents the design strategy for the optimal RTM molds of Carbon Fiber Reinforced Plastic (CFRP) by carbon fiber draping and resin flow simulation. First, the mold shape and molding condition were determined considering the undercut and die face of the product in the draping simulation, which made the preliminary shape of the product by compressing the carbon fiber. After that, the diffusion behavior during the injection of resin in the mold was predicted by the resin flow simulation. Finally, the optimal mold shape was designed by selecting the locations of resin injection port and vent based on total results of simulations. In this paper, the mold of automotive side mirror case was selected as the representative product. Also, the actual mold was manufactured based on the simulation design to confirm the practicality of it. This study is expected to contribute to the industry as a technology to improve the reliability and productivity of CFRP producted by RTM process.

A Study on Characteristics of the Material Flow Side-Extrusion by UBET (UBET에 의한 측방압출에서의 재료유동특성에 관한 연구)

  • Kim, Kang-Soo;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.116-121
    • /
    • 1999
  • Since the material flow near the die part in CONFORM (Continuous Extrusion Forming) process is similar to that of side-extrusion, the side-extrusion model of tube shaped aluminum profiles was studied for the die design in CONFORM process. In this paper, the effects of process parameters in the side -extrusion through a two-hole die face, such as material flow, height and thickness of the tube, velocities of punch and lengths of bearing land were investigated using UBET program and DEFORM commercial FEM code. The optimum lengths of the bearing lands and punch velocities for obtaining the straight shape products required were determined.

  • PDF

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

A Study on Characteristics of the Material Flow in Side-Extrusion (측방압출에서의 재료유동특성에 관한 연구)

  • 김영호;김강수;윤상식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.232-235
    • /
    • 1995
  • A side-extrusion model, meant for deeper understanding of the material flow in the CONFORM (continuous extrusion forming) of trub shaped aluminum profiles is presented. In order to get the desirded straight shape of the extrudate,every part of its cross-section must exit the die with the same velocity. Problem is assumed by plane strain UBET-model to analyze it in a simplified way. This has been done by studying the side-extrusion through a two -hole die face. The flow is balanced by determining the optimum lengths of the bearing lands, i.e., those lengths which result in equal exit velocities of the extrudates. Furthermore, the material flow, as influenced by the punch velocity, has been investigated.

  • PDF

Abrasive Wear Characteristics of Materials for Diesel Engine Cylinder Liner and Piston Ring (디젤엔진 실린더 라이너-피스톤 링 소재의 연삭 마멸 특성)

  • Jang, Jeong-Hwan;Kim, Jung-Hoon;Kim, Chang-Hee;Moon, Young-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.72-77
    • /
    • 2007
  • Abrasive wear between piston ring face and cylinder liner is an extremely unpredictable and hard-to-reproduce phenomenon that significantly decreases engine performance. Wear by abrasion are forms of wear caused by contact between a particle and solid material. Abrasive wear is the loss of material by the passage of hard particles over a surface. From the pin-on-disk test, particle dent test and scuffing test, abrasive wear characteristics of diesel engine cylinder liner-piston ring have been investigated. Pin-on-disk test results indicate that abrasive wear resistance is not simply related to the hardness of materials, but is influenced also by the microstructure, temperature, lubricity and micro- fracture properties. In particle dent test, dent resistance stress decreases with increasing temperature. From the scuffing test by using pin-on-disk tester, scuffing mechanisms for the soft coating and hard coating were proposed and experimentally confirmed.

Field Try-out of Tailored Door Inner Panel (테일러드 도어인너 패널의 현장 트라이아웃)

  • 이종문;김상주;금영탁
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2001
  • Forming more than two parts of sheet metal in a single stamping operation lowers production costs, reduces weight, and heightens dimensional accuracy. The tailored blank (TB) is a laser-welded or mash-seam-welded sheet metal with different thicknesses, different strengths, or different coatings. Recently, automotive manufacturers have been interested in tailored blanks because of their desire to improve the rigidity, weight reduction, crash durability, and cost savings. Therefore the application to auto-bodies has increased. However, as tailored blanks do not behave like un-welded blanks in press forming operations, stamping engineers no longer rely on conventional forming techniques. Field try-outs are very important manufacturing processes for an economic die-making. In the field try-outs, the rounded geometries of tool and the drawbead shape and size in die face are generally modified when the forming defects can not be removed by the adjustment of forming process parameters. In this study, the field try-outs of tailored door inner panel are introduced and evaluated. The behaviours of laser tailored blank associated with different thickness combinations in the forming process of door inner panel are described focusing on terms of experimental investigations on the formability.

  • PDF

Application of the CAE Process to the Parameter Determination far the Tool Design of an Auto-body Member (자동차용 부재 금형설계의 공정변수 결정을 위한 CAE 프로세스 적용)

  • Kim Seho;Huh Hoon;Song Junghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.64-73
    • /
    • 2005
  • This paper is concerned with the simulation-based parameter determination for the tool design in the stamping process of the complicated auto-body member. The CAE procedure of the stamping process is proposed so that troubles such as wrinkle, springback and excess metal be eliminated with changing parameters such as the blank size, the restraining force of the draw-bead and the embossing shape in the die face. The selected indicators of failure during forming are wrinkling. the amount of spring after unloading of the tool, the amount of excess metal developed .The proposed analysis scheme is applied to the tool and process parameter design for the front side member of a RV car. The simulation results show that the scheme can produce sound product from the viewpoint of thickness distribution, the contact condition between tools and the blank, the shape accuracy and so on.