• Title/Summary/Keyword: Die stress reduction design

Search Result 17, Processing Time 0.027 seconds

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae S. G.;Yang Y. S.;Ban D. Y.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.418-422
    • /
    • 2005
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire has been investigated. Test pieces were fabricated using die series with different mean and final reduction ratio. Surface residual stresses in the axial direction were measured by X-ray diffraction, Broker's 2-dimensional GADDS system. Results were compared with stress profiles which were calculated by 3D and 2D finite element simulation, Hibbitt's ABAQUS 6.4 program in Finite Element Analysis. By means of FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

  • PDF

The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire (고탄소강 와이어의 냉간 인발 시 다이 디자인과 다이 시리즈가 표면 잔류 응력에 미치는 영향)

  • Bae, J.G.;Yang, Y.S.;Ban, D.Y.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.153-157
    • /
    • 2006
  • In this study, the die design and die series on the surface residual stress of cold drawn eutectoid steel wire have been investigated. Test pieces were fabricated using die series with different mean and final reduction ratios. Surface residual stresses in the axial direction were measured by X-ray diffraction, Bruker's 2-dimensional GADDS system. The results were compared with stress profiles that were calculated by 3D and 2D finite element simulations, ABAQUS 6.4 program in finite element analysis(FEA). By means of the FEA method, optimal die shape considering delta-parameter were induced and applied in order to determine die sequence designs. Balance of the drawing stresses was also introduced to optimize die sequence.

A Study on the Design of Cold Forging Die with Parted Notch (분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구)

  • Lee, H.Y.;Yeo, H.T.;Hur, K.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.452-456
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to reduce the high pressure in die design of cold forging. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

A Study on the Design of Cold Forging Die with Parted Notch (분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구)

  • Lee, H.Y.;Yeo, H.T.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.434-437
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to ensure high pressure in die design. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

  • PDF

Process Design of Multi-pass Shape Drawing Considering the Drawing Stress (인발응력을 고려한 다단 형상인발 공정설계)

  • Kim, S.M.;Lee, S.K.;Lee, C.J.;Kim, B.M.;Jeong, M.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.

Process Design for Multi-pass Profile Drawing using Round Materials (원형소재를 이용한 프로파일 다단 형상인발 공정설계)

  • Lee, I. K.;Choi, C. Y.;Lee, S. K.;Jeong, M. S.;Lee, J. W.;Kim, D. H.;Cho, Y. J.;Kim, B. M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.234-240
    • /
    • 2015
  • Multi-pass shape drawing is very important to produce steel profiles in round samples. In the current study, a process design system is developed for a multi-pass shape drawing. In general, the number of passes for a multi-pass shape drawing is 2 to 3 when the reduction ratio, drawing stress, and productivity are considered. Therefore, calculating the drawing stress and designing the intermediated die shapes are very important. In order to calculate the drawing stress, a shape drawing load prediction method is proposed using a general axisymmetric drawing load prediction model. An intermediate die shape design method is proposed using the initial and the final product shapes. Based on this analysis, a process design system is developed for multi-pass shape drawing for steel profiles. The system works with AutoCAD. The system was applied to design a shape drawing of a spline.

Die stress and Process of Analysis for Condenser Tube Extrusion by using a Porthole Die (포트홀 다이를 이용한 컨덴서 튜브 직접압출 공정해석 및 금형강도 해석)

  • Lee, J. M.;lee, S. K.;Kim, B. M.;Jo, H. H.;Jo, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1030-1033
    • /
    • 2002
  • In this study, it is important that we have an understanding of the metal flow for manufacturing condenser tube in porthole die extrusion, because this need to provide for household appliances market that is expected to grow into the major market of the cooling system hereafter. Condenser tube is mainly manufactured by conform exclusion. However, this method was not satisfied a series of the needs for manufacturing condenser tube as compared with porthole die extrusion. The deforming skill recently is required high-productivity, high-accuracy and reducing lead-time, thus it is essential to substitute conform exclusion by porthole die exclusion. Porthole die extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process consists of three stages(dividing, welding and forming stages). In order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion lead, and therm stress analysis was practiced to obtain effective stress and elastic deformation value. A analytical results provide useful information the optimal design of the porthole die for condenser tube.

  • PDF

Development of a Channel Cutting Die Set (형재 절단금형 개발에 관한 연구)

  • Park, Kuwi-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.117-122
    • /
    • 2001
  • Many kinds of channels are used in industrial equipment and production machinery. Although mechanical saw has been used to cut many sorts of channels, there is cost rise problem because of low productivity. Shearing of channel has a special place because it helps to cut expected shape and size easily. A channel cutting die set which can be mounted and used on a hydraulic press is developed to improve the productivity of channel cutting process. Mode for the channel cutting is divided into single cut and double cut method. This study use double cut method, and the developed channel cutting die set is composed of upper and lower die set. Shearing time can be reduced from 40 minutes to 20 seconds using the developed channel cutting die set. The productivity of channel cutting process can be increased with shearing time reduction as well as cost reduction.

  • PDF

A study on the cold forging die geometry optimal design for forging load reduction (성형하중 감소를 위한 냉간단조금형 최적설계에 관한 연구)

  • Hwang, Joon;Lee, Seung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.251-261
    • /
    • 2022
  • This paper describes the finite element analysis and die design change of spring retainer forging process to reduce the cold forging load and plastic forming stress concentration. Plastic deformation analysis was carried out in order to understand the forming process of workpieces and elastic stress analysis of the die set was performed in order to get basic data for the die fatigue life estimation. Cold forging die design was set up to each process with different four types analysis progressing, the upper and lower dies shapes with combination of fillets and chamfers shapes of cold forging dies. This study suggested optimal cold forging die geometry to reduce cold forging load. The design parameters of fillets and chamfers are selected geometry were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the workpiece preform shape for spring retainer forging process, it was possible to expect an increase in cold forging die life due to the 20 percentage forging load reduction.