• Title/Summary/Keyword: Die set

Search Result 230, Processing Time 0.024 seconds

Technical Issues in Pattern Machining (패턴 가공에서의 기술적인 고려사항)

  • 김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

The Effect on the Thickness Variation According to Rolling Condition and Temperature Drop At Top-end in Plate Rolling (후판 압연 시 공정변수 및 선단부의 온도저하가 두께편차에 미치는 영향)

  • Yim, H.S.;Joo, B.D.;Lee, H.K.;Seo, J.H.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • The rolling process is an efficient and economical approach for the manufacturing of plate metals. In the rolling process, the temperature variation is very critical for plate thickness accuracy. The main cause of thickness variation in hot plate mills is the non-uniform temperature distribution along the length of the slab. Also the exit plate thickness is mainly affected by the rolling conditions such as mill modulus, plate thickness and plate width. Hence the thickness variation in top-end is also dependent on these factors. Therefore this study has concentrated on determining the correct amounts of thickness variation due to top-end temperature drop and process parameters.

Roll Die Forming Process for Manufacturing Clutch Hub in Automotive Transmission (롤 다이 성형공정을 이용한 변속기 허브 클러치 제조)

  • Ko, D.H.;Lee, S.K.;Kwon, Y.N.;Kim, S.W.;Lee, H.S.;Park, E.S.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • The roll die forming (RDF) process is a new manufacturing technique for producing gear parts such as clutch drum and clutch hub in automotive transmission. In the RDF process, the material is deformed by a roll installed on a die set. Excellent productivity, low forming load and improved dimensional accuracy have quantitatively been shown to be the benefits of the RDF. In this study, the RDF process is applied to manufacture a clutch hub with a gear shaped part. A finite element (FE) analysis was performed in order to investigate the material strain field and dimension of the final product. Based on the result of the FE analysis, a RDF experiment was performed and the dimensional accuracy of the final product was validated. This work demonstrates that RDF is a process capable of producing a sound clutch hub.

Analysis of Copper clad steel wire in the drawing process using FE method (유한요소 해석을 이용한 동피복 복합선재의 인발 공정 해석)

  • Kim H.S.;Jo H.;Jo H. H.;Kim D.K.;Kim B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.27-30
    • /
    • 2004
  • Clad wire , which has the advantages of the high strength of a steel core and the electro-conductivity, corrosion resistance of a copper layer, is widely being used the telecommunications, electric-electronic and military technology industries, among others. It is important to obtain uniform coated rate when producing clad wires. Clad wire drawing process can be influenced on damage and coated rate of core and sleeve by process variables as semi-die angle and reduction in area. Therefore, in this study, the finite-element results established in previous study is used to analyze the effect of the various forming parameters, which included the semi-die angle, reduction in area etc. The coated rate will be predicted with observation copper coated rate variation according to total reduction in area and the optimal pass schedule will be set up through proper reduction in area and semi-die angle variation.

  • PDF

The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet (알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향)

  • Kim, J.G.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine (선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계)

  • Hwang, B.C.;Lee, W.H.;Bae, W.B.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

A study on the die structure for the improvement of the geometric accuracy in the single point sheet incremental forming process (판재 점진 성형 공정의 정밀도 향상을 위한 다이 구조 개선에 대한 연구)

  • LEE, Won-Joon;KIM, Min-Seok;Seon, Min-Ho;YU, ․Jae-Hyeong;Lee, Chang-Whan
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • Unlike other press forming processes, ISF (Incremental sheet forming) doesn't require a punch and die set. However, during the ISF processes unwanted bending deformation occurred around the target geometry. This paper is aimed to analyze the effect of the die structure, which is supported by bolts, on the geometric accuracy of the ISF processes. In this research, the ISF processes with Al5052 sheet of 0.5 mm, the tool diameter of 6 mm and the stepdown of 0.4 mm was employed. L-shaped, step-shaped, relief-shaped geometry were employed in experiments. Sectional view and the plastic strain were compared. From this research we find out that the bolt supported ISF processes increases the geometric accuracy of products very effectively.

Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process (초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토)

  • Oh, I.S.;Yun, D.Y.;Cho, J.H.;Lee, M.G.;Kim, H.Y.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.

Form-Joining Process with the Aid of Adhesive for Joining of Sheet Metal Pair (중첩된 박판간의 결합을 위한 접착-성형공정)

  • 정창균;김태정;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.342-349
    • /
    • 2004
  • The form-joining process (or clinching) uses a set of die and punch to impose the plastic deformation-induced geometric constraint on a sheet metal pair. The joining strength from the process ranges 50-70 percent of that of the resistance spot welding. In this paper, a new form-joining process with the aid of an adhesive is proposed in which an epoxy adhesive is applied to a sheet metal pair, and before it cures the pair is clinched to cause the geometric constraint in the form of a protrusion. In order to reduce the forming load and the height of protrusions, a new die and punch set with a very small clearance is devised to reduce the depth of drawing and the forming load. Taguchi method is employed to find the optimal values of design parameters. To implement each case of the orthogonal array, the finite element method is used. The experiments show that in the tensile-shear test, the bonding strength of the new form-joining process with an epoxy adhesive is approximately the same as that of the resistance spot welding; and in comparison with the other two form-joining processes with an epoxy adhesive, the height of protrusions is reduced by more than 65 percent and the forming load by 50 percent.