• 제목/요약/키워드: Die hardener

검색결과 5건 처리시간 0.02초

석고 다이에 대한 다이 강화제의 영향 (THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE)

  • 김영림;박주미;송광엽
    • 대한치과보철학회지
    • /
    • 제45권4호
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

IV형 경석고와 경화처리된 IV형 경석고 그리고 폴리우레탄 수지 치형재의 표면경도와 미세구조 특성의 비교 (A comparison of surface hardness and microstructural characteristics between a type IV stone with and without die hardening treatment, and a polyurethane resin die material)

  • 이완선;김지환;김태석;김남식;유진호
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.227-235
    • /
    • 2012
  • Purpose: This study compared the surface hardness (Vickers) and microstructural characteristics between a type IV stone with and without die hardening treatment, a polyurethane die material. Methods: Materials used were a type IV stone(MG Crystal Rock), two die hardeners (Hardening bath, Epox-it), and a polyurethane resin material(Polyluck). Six specimens per group were prepared according to manufacturer's directions. The prepared specimens were tested by means of hardness test, one-way ANOVA analysis, scanning electron microscopic(SEM) observations and energy dispersive spectroscopic(EDS) analysis. Results: In the hardness test and its statistical analysis, there was no significant difference in the surface hardness between a type IV stone and type IV stone with die hardener coating, type IV stone mixed with an epoxy like material instead of water. In contrast, polyurethane resin material exhibited significantly greater surface hardness than other specimen groups (p<0.05). Conclusion: By considering the results of the hardness test, SEM observations and EDS analysis, although the die hardeners on type IV stone did not show remarkable improvement in surface hardness, the die hardener coating on the surface of type IV stone material did show decrease of microporous and improvement of surface defects.

LED Encapsulation을 위한 스태틱 믹서의 전산 설계 및 유동해석을 이용한 액상 실리콘의 혼합 특성에 대한 연구 (A Study on the Computational Design of Static Mixer and Mixing Characteristics of Liquid Silicon Rubber using Fluidic Analysis for LED Encapsulation)

  • 조용규;하석재;호소;조명우;최종명;홍승민
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.55-59
    • /
    • 2013
  • A Light Emitting Diode(LED) is a semiconductor device which converts electricity into light. LEDs are widely used in a field of illumination, LCD(Liquid Crystal Display) backlight, mobile signals because they have several merits, such as low power consumption, long lifetime, high brightness, fast response, environment friendly. In general, LEDs production does die bonding and wire bonding on board, and do silicon and phosphor dispensing to protect LED chip and improve brightness. Then lens molding process is performed using mixed liquid silicon rubber(LSR) by resin and hardener. A mixture of resin and hardener affect the optical characteristics of the LED lens. In this paper, computational design of static mixer was performed for mixing of liquid silicon. To evaluate characteristic of mixing efficiency, finite element model of static mixer was generated, and fluidic analysis was performed according to length of mixing element. Finally, optimal condition of length of mixing element was applied to static mixer from result of fluidic analysis.

  • PDF

사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석 (Analysis of impingement mixing for coating in injection mold)

  • 김슬우;이호상
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향 (Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding)

  • 최원정;유세훈;이효수;김목순;김준기
    • 한국재료학회지
    • /
    • 제22권9호
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.