• Title/Summary/Keyword: Die clearance

Search Result 124, Processing Time 0.025 seconds

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

A Study on the Characteristics to working Condition of STD11 in Wire-Cut EDM (Wire-Cut EDM에서 가공조건에 따른 STD11의 가공특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Kim, Jong-Up
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.5-12
    • /
    • 2005
  • In wire discharge machining which is using STD 11 as die materials, the major factors of machining speed are discharge voltage, discharge current, and discharge time. All of the three factors give the effect. Increasing of the discharge pulse time gets groove width wider and it relatively increases surface roughness and clearance. If no load voltage is decreased, surface roughness is good but it decreases machining speed. If on time is increased, machining speed will get faster and clearance and offset value also get bigger.

  • PDF

A Study on the Characteristics of the Precision Blanking of Lead Frame (1): Influences of Blanking Process Variables (리드 프레임 타발공정의 전단특성에 관한 연구(1) -전단 공정 인자의 영향)

  • 임상헌;서의권;심현보
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.425-432
    • /
    • 2001
  • In order to investigate the influences of process parameters on the shape of lead frame, experimental study has been carried out. In the experiment, dimensional accuracy of the die sets, measurement accuracy has been managed carefully enough to simulate actual lead frame blanking process. With the blanking of square-shaped specimen, the effects of clearance, strip holding pressure and bridge width on the shape of blanked profile have been investigated. Experimental results show that the burnish ratio is increased as the clearance decreases. the strip holding pressure increases, and bridge width increases. Although the results seems to be similar to the ordinary blanking, the lead frame blanking shows a subtle different characteristics to the ordinary blanking due to the narrow bridge width.

  • PDF

Consideration of the Clearance According to the Wire Electrical Discharge Machining Conditions (와이어 방전가공에서 가공조건에 대한 방전갭 크기 고찰)

  • 이건범;최태준;이세현;손일복;이성용;한상희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.105-110
    • /
    • 1999
  • Wire electrical discharge machining (WEDM) is one of the unconventional machining processes, which is utilizing electrical energy to remove work-piece. In recent years WEDM used widely in die-sinking industry because WEDM can machine any hard materials if only it has conductivity and can machine accurately to the complex geometry, for fine wire is used in WEDM for the tool electrode. However WEDM is non-contact machining process, which is utilizing discharge phenomena occurring between two electrodes, the size of the machined part is larger than that of the tool electrode size. It is called discharge gap or clearance the difference size between the tool electrode and the machined part in WEDM. By the experiment clearances according to the machining condition was investigated.

  • PDF

Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy (AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

A Study on The Burr Formation in Sheet Metal Shearing (박판 전단시의 버 형성에 관한 연구)

  • Shin, Yong-Seung;Kim, Byeong-Hee;Kim, Heon-Young;Oh, Soo-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.166-171
    • /
    • 2002
  • The objective of this paper is to investigate the effect of clearance and the configuration of die system on burr formation by FEM analysis and experimental tests. Compared with casting, forging and machining, shearing has been known, especially in heavy or mass-production industries, as a very economical and fast way to obtain the desired shape Recently, the shearing process becomes widely used in the small and light electronic component manufacturing industries. When shearing a part of sheet metal, the burr formed on the cutting edge is usually unavoidable. The burr would not only degrade the precision of products but also causes additional cost for the deburring process. In this paper, the influence of shearing parameters such as clearance and configurations of the lower pad (ejector) on burr formation is investigated by using the experimental and numerical approach. From the experimental results, it has been shown that the more narrow clearance gives the smaller burr height and the higher shearing forces. The removal of lower holder also makes the sheared surface integrity and the dimensional accuracy become worse. The FEM results (using DEFORM-2D) show good agreement with the experimental results.

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

An Experimental Study on the Bending Process of Stainless Steel Sheets (스테인리스 판재의 굽힘공정에 관한 실험적 연구)

  • Kim, Ho-Yoon;Hwang, Bum-Cheal;Bae, Won-Byong;Kang, Chung-Gil;Byun, Cheon-Deock
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.82-86
    • /
    • 1999
  • An experimental study has been carried out to reduce bending load, surface roughness and springback in bending process of stainless steel sheets. A U-bending test has been performed to investigate appropriate process parameters for getting better surfaces and accurate dimensions of stainless steel products. In the test, selected process parameters are die material, lubricant, and die clearance. Die materials used in the test are STD11(HRC60), STD11(TiCN), and AMPCO. From the test results, we can suggest that AMPCO dies are most suitable for reducing bending load and surface roughness of stainless steel sheets. And STD11 dies are favorable for avoiding spring-back in the stainless steel sheet-bending.

  • PDF

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.

Behavior of Punch Deformation in Precision Shearing Process Using Press Die (금형을 이용한 정밀전단가공에서 펀치의 변형거동)

  • Jeong, Jun-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.62-69
    • /
    • 2000
  • Uneven clearances in the left and right sides of a press die cause deformation of the punch in precision shearing process. This deformation results from the compression stress and bending moment from shearing force in vertical direction and from the side force in horizontal direction acting to the punch, In this study the behavior of punch deformation is investigated in order to clarify the deformation state of the punch by using strain gauge deformation to shearing force side force bending moment radius of curvature and shear plane of the punch. Also we presented the calculation method of deformation size for the punch.

  • PDF