• Title/Summary/Keyword: Die and Mold Material

Search Result 204, Processing Time 0.031 seconds

Knowledge-Base-System for forging mold and die material selection

  • Fu Tsow-Chang;Hung Chih Cheng
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.94-106
    • /
    • 2003
  • In recent years, the production value of Taiwanese mold and die industries have reached to a high peak in 1998, in amount of NT 604 hundred million dollars. But in recent years production value are going down year by year, till year of 2001 the production value have down to NT 394 hundred million dollars. Its main reason might be the major product were following in medium and low price category, the high accuracy and high cost mold and die still rely on import aboard. Therefore how to made the related technical database system on various field to provide the industry user to promote industries competition ability in mold and die is really urgent matter at this moment. In this research, we will offer how to apply the Visual Basic program language to edit a set of more perfect database system of mold and die material selection. At the present time, we have constructed complete Knowledge-Base-System of intelligence for forging mold and die material, the most related data from the existed data, the others are through our additional experimental results. By using this system by the user can got the related and need data easily, we hope it will reduce designing time and cost for mold and die.

  • PDF

A study on the factors affecting to material inflow in the drawing process (드로잉 공정에서 소재 유입에 영향을 미치는 인자에 관한 연구)

  • Lee, Sung-Min;Shin, Jin-Hee;Kim, Kyung-A;Lee, Chun-Kyn
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • Sheet Metal Forming by Press Forming Process takes a lot of time and cost from mold design to manufacturing. Therefore, all of die-makers are continuously conducting research to reduce the number of mold processes or the size of blanks to reduce costs. In the case of Forming complex shapes such as automobile component, wrinkles and cracks occur, so draw beads are used. Draw beads play an important role in suppressing the inflow of materials and minimizing the size of blanks. Factors that affect material flow include draw bead, blank holding pressure, lubricant, and surface roughness of punch and die. Most of the factors affect friction. In this study, after classifying circular beads and rectangular beads in cylindrical drawing molds using the AutoForm analysis program, the factors affecting the material inflow were considered.

A study on material selection for semiconductor die parts and on their modification and manufacture (반도체금형에서 부속부품의 재료선정 및 개선과 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.27-30
    • /
    • 2014
  • Alloy tool steel such as SKD11 and SKD61 or high speed tool like SKH51 are used as materials for semiconductor dies. Cavities, curl blocks, pot blocks and housings are made from those materials. To make those parts from alloy tool steel or high speed tool, one utilizes discharge machining, and mechanical machining including machining center, milling, drilling, forming grinding and others. In the process of cutting machining and polishing, the die materials become unsuitable for machining owing to bubbles and foreign substances in them, which hinders production process. Therefore, this study focuses on die material selection criteria, and on analysis and comparison of material characteristics to help companies to solve their problems, make die manufacture less burdensome and extend die life.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

Mold-Flow Simulation in 3 Die Stack Chip Scale Packaging

  • Rhee Min-Woo
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.67-88
    • /
    • 2005
  • Mold-Flow 3 Die Stack CSP of Mold array packaging with different Gate types. As high density package option such as 3 or 4 die stacking technologies are developed, the major concerning points of mold related qualities such as incomplete mold, exposed wires and wire sweeping issues are increased because of its narrow space between die top and mold surface and higher wiring density. Full 3D rheokinetic simulation of Mold flow for 3 die stacking structure case was done with the rheological parameters acquired from Slit-Die rheometer and DSC of commercial EMC. The center gate showed severe void but corner gate showed relatively better void performance. But in case of wire sweeping related, the center gate type showed less wire sweeping than corner gate types. From the simulation results, corner gate types showed increased velocity, shear stress and mold pressure near the gate and final filling zone. The experimental Case study and the Mold flow simulation showed good agreement on the mold void and wire sweeping related prediction. Full 3D simulation methodologies with proper rheokinetic material characterization by thermal and rheological instruments enable the prediction of micro-scale mold filling behavior in the multi die stacking and other complicated packaging structures for the future application.

  • PDF

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

A study on the abrasion resistance of punching carbide material of die for the application of SCP-1 material (SCP-1재료 적용을 위한 초경재료 펀치의 내마모성에 대한 연구)

  • Kim, Seung-Soo;Lee, Min;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.44-48
    • /
    • 2019
  • Motor core products are used as materials for electrical steel sheets and cold-rolled steel sheets according to the performance of motors. The cemented carbide material of the mold punch applied to the motor core material causes many troubles due to abrasion and burr problem. The selection of these materials has a great effect on the production life, mass production, product quality as well as mold life. The cemented carbide applied to the products of the motor core is recognized as a very important part. In this study, cold rolled steel sheet was applied to motor core SCP-1 steel 1.0mm, and The effects of abrasion and punching oil on the shear process were investigated for the selection of cemented carbide. Experiments were conducted to select and apply cemented carbide only for the motor core punch optimized for cold rolled steel. The results showed that the cemented carbide material of $CDK3^{***}$ produced the least wear and burrs.

A study on the factors influencing at corner area material thickness changes of rectangular drawing products (각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구)

  • Yun, Jae-Woong;Cho, Sang-Hee;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.

A Study on the Deformation Behavior of Material by V-Ring in Fine Blanking Process (파인블랭킹 공정에서 V-링에 의한 재료의 변형 거동에 관한 연구)

  • Lee, Chun-Kyu;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.46-50
    • /
    • 2017
  • Press processing is one of the best machining methods capable of mass production, satisfying dimensional, shape and quality among the methods of processing a metal plate. Among them, Fine blanking is a method of obtaining a precise cross-section such as machining of the shear surface shape. In this research, Using SCP-1 and SHP-1 materials. The deformation behaviors of the material flow affecting the die height of the shear section in accordance with the position of the V-ring in the Fine blanking were compared and analyzed. Result of interpretation, It was confirmed that the force acts on the position where the material flow direction accurately forms the die roll that the material of SCP-1 is at a position of 1.5 mm and the material of SHP-1 is at 2.0 mm. As a result, it was confirmed that the state of fo1111ing the shear surface by the V-ring was excellent. Using analysis results, In the experiment, the height of the die roll was considered by applying The position of the V-ring was 1.5 mm in SCP-1 and 2.0 mm in SHP-1. As a result of comparing the height of the die rolls, the height values of the die rolls were different from each other, It has been considered that the tendency of the die rolls to coincide with each other. It is considered that the difference of the die roll height is caused by the pressure input of the V-ring. In this study, the deformation behavior of the material(In addition to the position of the V-ring, the flow direction of the material depends on the shape of the V-ring and the Indentation amount) is considered to be an important factor in determining die roll height.

A Study of Characteristic correlation go after the variable of shear process design for Carbon Tool Steel (II) (탄소공구강의 전단설계 변수에 따른 특성 상관관계 연구 (II))

  • Ryu, Gi-Ryoung;Ro, Hyun-Cho;Song, Jae-Son;Park, Chun-dal;Youn, Il-chae
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • The sheet metal forming proceccing is very important and indispensable in the automotive industry because the accuracy of prsee worked parts is directly related to the automotive quality. But when making mold it is difficult and expensive to modify mold. mold design technology is a critical technology in press plastic working. When design the mold there are lots of variables in press plastic working according to worked material, mold materials, conditions of heat treatment, clearance and so on. Abrasion of mold depends on these kind of conditions and sheared surface which is crucial for quality of product also depends on them. In this study, we conduct research on abrasion loss of mold according to 8, 10 and 12% of clearance for thickness of 1.0mm of worked material out of mold design variables of the products whose worked materials are high carbon steel and carbon tool steel by a practical experiment and perform a comparative evaluation of difference of abrasion loss mold with the alloy tool steel (STD11) and Tungsten Carbide (WC).

  • PDF