• Title/Summary/Keyword: Die and Mold

Search Result 803, Processing Time 0.029 seconds

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

DACUM Job Analysis of Die and mold makers for Apprenticeship education of Specialized high school (특성화고 산학일체형 도제교육을 위한 금형제작원의 DACUM 직무분석)

  • Kim, Jong-Wook;Kim, Ji-Won;Kim, Jinsoo
    • 대한공업교육학회지
    • /
    • v.41 no.1
    • /
    • pp.1-21
    • /
    • 2016
  • The purpose of this study is to analyze job of die and mold makers for apprenticeship education of specialized high school using DACUM method. The contents of this study were to identify the duties, specific tasks performed and the level of importance, difficulty, frequency and entry level on each task. This study also make out a DACUM chart of die and mold makers for apprenticeship education of specialized high school. The DACUM committee, which consisted of one facilitator, nine die and mold experts, one recorder and one coordinator, was established to conduct DACUM. The conclusions are as follows; First, this study defines a die and mold makers as 'a person who make it possible to manufacture/assemble/inspect die and mold parts using various machine tool'. Second, duties in job of die and mold makers for apprenticeship education were total 12 and total tasks in job of die and mold makers for apprenticeship education were 86. Third, this study determine the level of importance, difficulty, frequency and entry level about each task. Finally, this study make out a DACUM chart of die and mold makers for apprenticeship education of specialized high school based on the results of DACUM job analysis. And knowledge, skills, tools, and positive behaviors, future trends/concerns about die and mold makers for apprenticeship education of specialized high school were presented.

A prediction of mold temperature distribution and lifetime with different spray process of mold release agent in high pressure diecasting mold using computer simulation (컴퓨터 시뮬레이션을 이용한 고압다이캐스팅 금형의 이형제 분사공정에 따른 금형온도분포 및 금형수명 예측)

  • Kim, Dong-Hyun;Yoon, Sang-Il;Chang, Dae-Jung
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.49-53
    • /
    • 2019
  • The temperature distribution and lifetime of molds were predicted by computer simulation analysis with various spraying and blowing process of high pressure die casting. After varying the spraying angle and time, the mold temperature, heat exchange and mold life were predicted. As the spraying angle increases, the maximum temperature of the mold decreases, which is because the spraying area increases and the heat exchange with the mold increases. Heat exchange occurs more actively in the blowing process than in the spraying process. This is because the cooling is not performed due to the steam generation. When the spraying angle is 50 degree, the minimum life of the mold is analyzed 200 times. After adjusting the blowing time from 5s to 3s, the minimum lifetime of the mold has been increased almost twice.

A study on the design and manufacture of fine blanking die for the clinch washers (크린치와셔 F/B금형 설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.37-41
    • /
    • 2012
  • Usually compound dies are used in clinch washer production. However, in this study, a fine blanking die is designed and manufactured, and clinch washers are produced by the die. Clinch washers are for electric exhaust gas recirculation (EEGR) and they recirculate some of exhaust gas to reduce harmful substances. Fine blanking automation production eliminates difficulties operators face on conventional press.

  • PDF

Effect of Mold Dimensions on Temperature Distribution of Die during Plasma Activated Sintering (플라즈마 활성 소결에 있어서 다이스의 온도분포에 미치는 몰드 크기의 영향)

  • Lee Gil-Geun;Park IK-Min
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.363-368
    • /
    • 2004
  • In the present study, the focus is on the analysis of the effect of the mold dimensions on the temperature distribution of a die during plasma activated sintering. The temperature distribution of a cylindrical mold with various dimensions was measured using K-type thermocouples. The temperature homogeneity of the die was studied based on the direction and dimensions of the die. A temperature gradient existed in the radial direction of the die during the plasma activated sintering. Also, the magnitude of the temperature gradient was increased with increasing sintering temperature. In the longitudinal direction, however, there was no temperature gradient. The temperature gradient of the die in the radial direction strongly depended on a ratio of die volume to punch area.

Stamping process design to develop a urea tank cover for excavators based on sheet metal forming analysis (굴삭기 요소수 탱크 커버의 신규 모델 개발을 위한 CAE 기반 프레스 성형 공정 설계)

  • Jeon, Yong-Jun;Heo, Young-Moo;Yun, Seok-Hyun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.49-55
    • /
    • 2020
  • Recently, when a new component of construction equipment is designed, a stamping process capable of producing parts having high appearance quality and precision has been gaining attention. However, in general, as it is developed based on existing parts made by welding metal sheets and tubes, frequent to die modification occurs, which increases the time and cost of developing new parts. Thus, it is necessary to reduce the cost by shortening the die development period. In this study, a stamping process was designed for the urea tank cover, which is a part for excavators, to reduce the die development period through sheet metal forming analysis. The stamping process was designed by determining the blank holding force after selecting the initial blank shape and size. The round value at the corner was modified such that formability is ensured. After selecting process parameters, the thickness reduction rate and spring-back effect were reviewed.

A Study on injection mold shrinkage estimates (사출 금형 수축률 산정에 관한 연구)

  • Choi, Gwang-Hyeck;Han, Seong-Ryeol;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.30-33
    • /
    • 2016
  • It is true that the plastic shrinkage is inevitable. Shrinkage rate in effect at the time of mold design will soon determine the size of the global product. Process for the shrinkage of the plastic that provides how made, yet it has identified a process for making the question whether the shrinkage that can be trusted, and by the experimental results were as follows: as shrinkage, see ISO but, according to circumstances the process can go to the agreement between the parties. shrinkage ratio of the pressure sensor installed in the specimen mold is essential, amount of pressure sensor is that it is appropriate approximately 2-3. proper holding pressure is a significant effect on shrinkage Mitch, so that the effect of selecting the contraction ratio data according to the appropriate holding pressure during mold making. shrinkage CAE analysis results are difficult to utilize in the mold-making chamber. Based on these results, it concluded by looking forward to the improved products produced shrinkage.

Automated process plan and an intelligent NC data generation for unmaned machining of mould die (모울드 금형의 무인가공을 위한 자동공정계획 몇 지능형 NC 데이터 생성)

  • 유우식;김대현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.143-155
    • /
    • 1996
  • Presented in this paper are a CAPP(Computer Automated Process Planning) scheme and a generating method of intelligent NC data for unmaned machining of mold die. Mold die surfaces usually have free-formed geometry of complex shapes. So it is easy to overcut the die surface and to overload the cutting tools. It takes tens of hours to prepare process plans and to generate NC data for each processes. Therefore a classification of unit machining operation(UMO) for mold die manufacture, a backward recursive capp algorithm and a generating method of intelligent NC data are presented in this paper in order to provide a unmaned machining architecture of mold die.

  • PDF

A Study on the Wall Thickness Design for Injection Molding (사출 금형의 벽두께 설계 방법의 고찰)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.149-153
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF