• Title/Summary/Keyword: Die Steel

Search Result 441, Processing Time 0.026 seconds

A Study on the High Temperature Fatigue Behavior of Hot Forging Die STD61 Steel (STD61 열간 금형강의 고온피로거동에 관한 연구)

  • 여은구;이태문;이용신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.711-714
    • /
    • 2002
  • Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies about brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel at 700 and 900 are carefully examined, as the basic experimental data are used to predict from fatigue life over 700.

  • PDF

The Effect of Optimum In-process Electrolytic Dressing in the Mirror-like Grinding of Die steel by Superfind Abrasive wheel (초지립 지석에 의한 금형강 경면연삭시 최적 연속 전해드레싱의 영향)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.16-25
    • /
    • 1999
  • In recent years, grinding techniques for precision machining of brittle materials used in die, model and optical parts have been improved by using superfine abrasive wheel and precision grinding machine. The completion of optimum dressing of superfine abrasive wheel makes possible the effective precision grinding of die steel(STD-11). In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This method can carry out optimum in-process electrolytic dressing of superfine abrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of STD-11.

  • PDF

Design Guideline for Press Tool Structure of Ultra-high Strength Steel Part with Shape Optimization Technique (형상최적화 기법을 이용한 초고강도강판 성형용 프레스 금형의 구조설계 가이드라인)

  • Kang, K.H.;Kwak, J.H.;Bae, S.B.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.372-377
    • /
    • 2017
  • In this paper, an effective design procedure was proposed to design the rib of die structure for auto-body member with ultra-high strength steel (UHSS) having ultimate tensile strength (UTS) of 1.5 GPa. From analysis results of the die structure, structural safety of the die was evaluated with information such as displacement and von-Mises stress. It was concluded that the casting part could be designed in order to reduce tool deformation. A design guideline of the die structure was proposed, especially for the rib structure in the casting part with an optimization scheme and local reinforcement concept. Simulation result following the design guideline fully explained that stability of the tool structure could be obtained simultaneously with weight minimization.

Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel (SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향)

  • Kim, Heon-Joo;Cho, Chi-Man;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.4
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Optimization of Design Planning with Tool Simulation (시뮬레이션 설계공법의 최적화)

  • Lee J. M.;Park I. C.;Kim Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.305-311
    • /
    • 2005
  • The die development of the high-strength steel sheet has big difference on the formability compared with the general panels. Especially, the springback after stamping of the high-strength steel sheets shows big problem. In this study, for the die development of the high-strength steel sheets, write about examples reducing the lead time and the expense of the die development after CAD modification with the result of the springback analysis after finding the best design planning as several times stamping analysis.

  • PDF

Joint characteristics of advanced high strength steel and A15052 alloy in the clinching process (초고장력강과 알루미늄 5052 소재의 클린칭 접합특성)

  • Lee, C.J.;Kim, J.Y.;Lee, S.K.;Ko, D.C.;Schafer, H.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.401-404
    • /
    • 2009
  • The purpose of this study is investigating the joint characteristics of advanced high strength steel DP780 and Al5052 alloy sheet in the clinching process. It is difficult to join the advanced high strength steel with light-weight materials like aluminum alloy, because of low formability of DP780. The defects of clinching joint such as necking of the upper sheet, cracks of the lower sheet and no interlocking were occurred by different ductility between advanced high strength steel and aluminum alloy. The clinching conditions should be optimized to interlock without any defects. In this study, the effect of process parameters of clinching process on joinability of advanced high strength steel with Al5052 alloy was investigated by using FE-analysis. From the result of FE-analysis, the clearance between clinching punch and die, die depth and the shape of die cavity mainly affected the joinability of advanced high strength steel with Al5052 alloy.

  • PDF

A Study on the Characteristics of Cast Bonding Aluminium Alloy and Fe-17wt%Cr Steel with Vacuum Die Casting (진공다이캐스트법에 의한 Al합금과 Fe-17wt%Cr 강의 주조접합 특성연구)

  • Kim, Yong-Hyun;Kim, Eok-Soo;Kim, Heung-Sik;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.410-418
    • /
    • 1999
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Fe-17wt%Cr steel (stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemical etched to have optimum pit size (above 0.2 mm) and pit density (above 30%). The implementation of vacuum die casting by using surface treated stainless steel (Fe-17wt%Cr Steel) produces good trial products having acceptable cast-bonding ability. The enabling conditions for cast-bonding are pouring temperature $690^{\circ}C$, filling speed 30 m/sec and casting pressure $800\;kg/cm^2$. The microscopic observation of cast-bonded Al/Fe-17wt%Cr steel does not show any evidence of intermetallic compounds. The bonding strength of trial products is $150-400\;kg/cm^2$ and this is stronger than conventionally cladded metal having $30-70\;kg/cm^2$.

  • PDF

A Study on the Relation Between Expansion and the Characteristics of Surface in the ED-Drilling (방전드릴의 방전갭과 표면특성에 관한 연구)

  • Choi, Jong-Yeun;Kim, Kyeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.73-79
    • /
    • 2012
  • This paper describes the machining characteristics of the sintered carbide and die steel(STD-11) by electric discharge drilling with various tubular electrodes. Electrical discharge machining(EDM) removes material from the workpiece by a series of electrical sparks that cause localized temperatures high enough to melt or vapourize the vicinity of the charge. In the experiment. four types of electrode which have different diameter are used with the application of continuous direct current and axial electrode feed. The controlled factors include the dimension of the electrode. In drilling by EDM, the dielectric flushed down the interior of the rotating tube electrode, in order to order to facilitate the removal of machining debris the hole. The expansion increase with increasing the thickness of material and the diameter of electrode and the expansion of sintered carbide is 1.75 times large then that of die steel. The taper of machined hole decrease with increasing the thickness of material. The crater sixe of die steel is larger then thet of sintered carbide and the surface roughness of sintered carbide is 1.58 tims larger then that of die steel.

A Study on the Selection of Stainless Steel for Automotive Inside Mirror Joint by Vacuum Sintering (진공소결을 통한 자동차용 인사이드 미러 접합부의 스테인레스강 선정에 관한 연구)

  • Sung, Si-Myung;Jung, In-Ryung
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2018
  • The car requires an inside mirror installed between the driver's seat and the passenger's seat to ensure the driver's rear and side view of the driver. Inside mirrors must always be attached to the vehicle to ensure the driver's visibility. Inside mirrors attached to the windshield of a vehicle are always exposed to direct sunlight and should be semi-permanently usable in hot and humid summer weather in Korea. Therefore, the mirror mount, which is the junction of the inside mirror, is particularly important in corrosion resistance and wear resistance suitable for humidity. Mirror mounts are currently difficult to manufacture due to their reliance on powder molding technology in advanced countries such as Japan and Germany. This paper focuses on the fabrication of high corrosion resistant stainless mirror mounts by vacuum sintering technique and focuses on the selection of materials suitable for the production of mirror mounts through experiments of 300 series stainless steel and 400 series stainless steel manufactured by vacuum sintering.

A Study on the Toughness of Die Steel Coated with VC (vanadium carbide) by Immersing in Molten Borax Bath (용융염 침적법에 의한 VC Coating 금형강의 인성에 관한 연구)

  • Lee, B.K.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.2
    • /
    • pp.59-69
    • /
    • 1993
  • Bending fracture strength test and impact strength test were made for VC coated die steels treated by immersing in molten borax bath and for hardened steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$. The material used in this investigation was representative cold and hot work die steels STD11, STD61. The results obtained are as follows. 1) The bending fracture strength of VC coated die steel (STD11, STD61) was lessened with increasing the thickness of the VC coated layer. 2) With increasing the immersing time (imcreasing the thickness of the VC coated layer) the maximum hardness was obtained at 480 minutes holding, after that holding time hardness was decreased. 3) The impact strength of the VC coated die steel was not decreased. In the casse of STD11, it was higher than that of the quenched condition especially at low tempering temperature, and vice versa at high tempering temperature. However in the case of STD61 shows the result to the contrary.

  • PDF