• 제목/요약/키워드: Die Shape Radius

검색결과 60건 처리시간 0.028초

Deep Drawing With Internal Air-Pressing to Increase The Limit Drawing Ratio of Aluminum Sheet

  • Moon, Young-Hoon;Kang, Yong-Kee;Park, Jin-Wook;Gong, Sung-Rak
    • Journal of Mechanical Science and Technology
    • /
    • 제15권4호
    • /
    • pp.459-464
    • /
    • 2001
  • The effects of internal air-pressing on deep drawability are investigated in this study to increase the deep drawability of aluminum sheet. The conventional deep drawing process is limited to a certain limit drawing ratio(LDR) beyond which failure will occur. The intention of this work is to examine the possibilities of relaxing the above limitation through the deep drawing with internal air-pressing, aiming towards a process with an increased drawing ratio. The idea which may lead to this goal is the use of special punch that can exert high pressure on the internal surface of deforming sheet during the deep drawing process. Over the ranges of conditions investigated for Al-1050, the local strain concentration at punch nose radius area was decreased by internal air-pressing of punch, and the deep drawing with internal air-pressing was proved to be very effective process for obtaining higher LDR.

  • PDF

자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구 (Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile)

  • 허영민;박동환;강성수
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

액압벌징에 의한 보온용기의 제조방법 개발 (Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging)

  • 정준기;조웅식
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.24-31
    • /
    • 1999
  • Bulging is a forming method to shape of die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at the both ends of tube. The diameter of tube expands by hydraulic pressure in tube. at the same time, thrust at the both ends of tube. pushes tube in the direction of expansion to obtain high expanding rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by the combination method of bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계 (Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology)

  • 김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

CAM 소프트웨어를 활용한 완만한 구배면의 효율적인 가공에 관한 연구 (A study on efficient machining of smooth drafting surface using CAM software)

  • 박희수;최계광
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.19-23
    • /
    • 2019
  • In the mold industry, CAM software has been introduced to solve the impossible or time-consuming part of the mold industry because the increase in labor costs, the drop in mold price, and the short delivery time are tasks to be solved not only in the manufacturing industry but also in the mold industry as a whole. In order to reduce the processing time and improve the surface roughness, we have been conducting various researches for efficient machining. This study was carried out to compare the ball end mill and radius end mill tools with the Power mill software and NC brain software under the same conditions and to find out the most efficient method of machining the smooth drafting surface and improving the surface roughness. (1) By machining the smooth drafting surface using radius end mill, the machining time is 23.7% faster than when using ball end mill. (2) Surface roughness when machined with radius end mill is smoother than when using ball end mill. Based on these results, it can not be applied to all shapes, but if it is a relatively wide and simple gradient shape, the raster machining method using radius end mill can be more effective in terms of delivery and quality than machining with ball end mill.

성형 오차 예측 모델을 이용한 가변 성형 공정에서의 탄성 회복 보정 (Compensation for Elastic Recovery in a Flexible Forming Process Using Predictive Models for Shape Error)

  • 서영호;강범수;김정
    • 소성∙가공
    • /
    • 제21권8호
    • /
    • pp.479-484
    • /
    • 2012
  • The objective of this study is to compensate the elastic recovery in the flexible forming process using the predictive models. The target shape was limited to two-dimensional shape having only one curvature radius in the longitudinal-direction. In order to predict the shape error the regression and neural network models were established based on the finite element (FE) simulations. A series of simulations were conducted considering input variables such as the elastic pad thickness, the thickness of plate, and the objective curvature radius. Then, at sampling points in the longitudinal-direction, the shape errors between formed and objective shapes could be calculated from the FE simulations as an output variable. These shape errors were expressed to a representative error value by the root mean square error (RMSE). To obtain the correct objective shape the die shape was adjusted by the closed-loop using the neural network model since the neural network model shows a higher capability of estimating the shape error than the regression model. Finally the experimental result shows that the formed shape almost agreed with the objective shape.

미세 방전 가공을 이용한 반구형 전극 제작 (Half spherical electrode machining in micro EDM)

  • 김기현;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1080-1084
    • /
    • 2001
  • In manufacturing a micro die with half spherical cavity by MEDM, it is necessary to prepare an electrode with the same shape. This paper suggests a simple method to manufacture a half spherical electrode based on tool wear. The tool wears more rapidly at the edge of a cylindrical electrode. In order to make a half spherical micro electrode, cylindrical electrode was fed into the workpiece by the distance of its radius. The d/R(depth/Radius) value varied with respect to capacitance and electrode diameter. The smaller the size of electrode was, the closer the electrode tip geometry approached to a half sphere.

  • PDF

박판의 Z-굽힘가공에서 외측 굽힘반지름 치수의 최소화(샤프에지) 가공법에 관한 연구 (A Research on the Processing Method to Minimize the Outer Radius(Sharp edge) in Sheet Metal Z-bending Work)

  • 윤재웅
    • 한국산학기술학회논문지
    • /
    • 제18권2호
    • /
    • pp.349-355
    • /
    • 2017
  • 프레스금형(press dies)에 의한 굽힘가공(bending work) 이라는 것은 평평한 블랭크(blank)를 필요로 하는 각도(角度)로 굽히는 것이다. 굽힘가공을 하면 굽혀진부분(flange)과 굽혀지지 않은 부분(web)으로 구분되며, 굽힘라인(bending line) 부분에는 굽혀진 각도(bending angle)와 굽힘반지름(bending radius)이 내측과 외측으로 성형된다. 이때, 내측 굽힘반지름의 크기는 제품의 재질별로 최소치수가 제시 된다. 제시된 최소치수 보다 작게 굽히면 절단면 굽힘부위에 덧살이 발생 하거나 외측 굽힘반지름 부위에는 균열(crack)이 생긴다. 굽힘가공에서의 외측 굽힘반지름은 자연적으로 생긴다. 그래서 외측 굽힘반지름 치수를 굽힘펀치와 다이블록으로 조정하면서 필요한 치수로 굽힐수 없다. 굽힘가공에는 V-굽힘, U-굽힘, Z-굽힘, O-굽힘, P-굽힘, 에지굽힘(edge bending), 트위스트굽힘(twist bending), 크림핑(crimping) 등이 있다.이 중에서 Z-굽힘은 굽힘라인이 2개로써 블랭크의 상면(上面)과 하면(下面)에 설정하여 상향(上向)굽힘이나 하향(下向)굽힘으로 작동되는 금형을 사용한다. Z-굽힘을 크랭크굽힘(crank bending) 이라고도 한다. 이런 구조의 금형으로 Z-굽힘가공을 하면 내측반지름은 표준치수로 굽혀진다. 표준치수라는 것은 굽힘가공에서 굽힐 수 있는 최소 굽힘반지름 치수로서 굽힘펀치의 각(角)반지름(Rp)를 뜻한다. 그런데 산업현장에서는 외측 굽힘반지름 치수를 굽힘펀치와 다이블록으로 굽힐수 없는 미세한 샤프에지(sharp edge) 형상인 매우 작은 치수(R=0.2mm)를 필요로하고 있는 바, 본 논문에서는 외측 굽힘반지름 치수를 0.2mm 이하로 굽힐수 있는 Z-굽힘가공 공법을 개발 하고자 하였다.

사각형 블랭킹을 통한 리드프레임의 블랭킹 특성에 관한 기초연구 (A Study on the Characteristics for the Blanking of Lead Frame with the Rectangular Shape Blanking)

  • 임상헌;서의권;심현보
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.182-188
    • /
    • 2001
  • An experiment is carried out to investigate the characteristics of blanking for copper alloy C194 (t=0.254mm), a kind of IC lead frame material. By varying clearance between die and punch, the shapes of shear profile are examined. Finite element analysis with element deletion algorithm for ductile fracture mode is also carried out to study the effect of clearance theoretically and to compare with experimental results. The rectangular shape specimen with four different corner radius is used to study the characteristics of blanking for straight side and corner region simultaneously. As the result, the ratios measured from the experiment of roll over, burnish, and fracture zone based on intial blank thickness are compared with those of FE analysis. Both experiment and FE analysis show that the amount of roll over and fracture is increased as the clearance increases. It has been found that larger clearance is required than that of straight region when the radius of corner is less than thickness of blank, in order to maintain same quality of shear profile at the corner region.

  • PDF