• Title/Summary/Keyword: Die Material

Search Result 1,021, Processing Time 0.03 seconds

The Effects of the Process and Die Design for Precision Forging of Al Alloys (AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

A study on the deformation of thickness by drawing process of upper housing products (Upper housing 제품의 드로잉공정에 의한 두께 변형 고찰)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2019
  • For manufacturing upper housing product of mechanical control valve, the progressive drawing process was conducted experimental. Then, the center of the product was cut to measure the thickness of the product. As a result, the following conclusions were obtained. By means of a stand-alone pad provided with sufficient pressure, it is possible to prevent the occurrence of wrinkles in the die pad product of the drawing process. As a result of the experiment, it was considered that the flange bottom of the product and the lower edge of the product are made thick in thickness, the top edge and the top surface are thin. It is considered that this is due to the size and roughness of the entrance edge radius of the die in the drawing process, and the inflow of the material by the die pad.

A study on the cold heading process design optimization by taguchi method (다구찌법을 활용한 헤딩공정설계 최적화 연구)

  • Joon Hwang;Jin-Hwan Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.216-225
    • /
    • 2023
  • This paper describes the finite element analysis and die design change of cold heading punching process to increase the cold forging tool life and reduce the tool wear and stress concentration. Through this study, the optimization of punch tool design has been studied by an analysis of tool stress and wear distribution to improve the tool life. Plastic deformation analysis was carried out in order to understand the cold heading process between tool and workpiece stress distribution. Cold heading punch die design was set up to each process with different four types analysis progressing, the cold heading punch dies shapes with combination of point angle and punch edge corner radius shapes of cold forging dies, punch die material properties and frictional coefficient. The design parameters of point angle and corner radius of punch die geometry, die material properties and frictional coefficient were selected to apply optimization with the DoE (design of experiment) and Taguchi method. DoE and Taguchi method was performed to optimize the cold heading punch die design parameters optimization for bolt head cold forging process, it was possible to expect an reduce the cold heading punch die wear to the 37 % compared with current using cold heading punch in the shop floor.

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

Plate Forging Process Design for an Under-drive Brake Piston in Automatic Transmission (자동변속기용 언더드라이브 브레이크 피스톤의 판 단조공정 개선 방안)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • The under-drive brake piston is an essential part in the automatic transmissions of automobiles. This component is manufactured by forging after blanking from S55C plate with a thickness of 6mm. It is difficult to design the plate forging process using a thick plate approach since there will be limited material flow as well as large press loads. Furthermore, the under-drive brake piston has a complex shape with a right angle step, which often results in die unfill and abrupt increase in press load. To overcome these obstacles, a separate die for filling material sufficiently to the corner of the right angle step is proposed. However, this approach induces an uncontrolled workpiece surface between the dies, resulting in flash. This excess flash degrades the tool life in the final machining after cold forging as well as increases the cycle time to obtain the net-shape of the part. In the current study, we propose an optimum process design using a conventional die shaped with the benefit of finite element analysis. This approach enhanced the process efficiency without sacrificing the dimensional accuracy in the forged part. As the result, the optimum plate forging process was done with a two stage die, which reduces weight of by 6% compared with previous process for the under-drive brake piston.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Material Evaluation of Lead Die-Casted Positive Grid for Battery Using Nondestructive Evaluation Technique (연축전지 양극기판의 기계적 특성비교 분석 및 비 파괴 평가기법의 적용)

  • Kim, Hui-Jung;Lee, Min-Rae;Lee, Jun-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1709-1718
    • /
    • 2002
  • It is well recognized that improving capacity of positive grid in battery is one of key factors for controlling the expected long lift-time of Battery Energy Storage System(B.E.S.S). Thus it is really important to characterized material properties of positive grid which are mainly affected by fabrication process. In this study, two kinds of positive grids, which were fabricated by gravity casting and die-casting technique were used. Micro-structural observation and tensile test were conducted to investigate the effect of fabrication process of positive grid. Ultrasonic measurement based on pulse-echo method and ultrasonic C-scan technique also performed to correlate ultrasonic velocity with porosity ratio in positive grid. It was found that the porosity ratio of grid fabricated by gravity casting technique increased significantly compared to the grid fabricated by die-casting technique. It was also shown that ulrasonic technique is effective to evaluate the porosity ratio in positive grid.

Roll Die Forming Process for Manufacturing Clutch Hub in Automotive Transmission (롤 다이 성형공정을 이용한 변속기 허브 클러치 제조)

  • Ko, D.H.;Lee, S.K.;Kwon, Y.N.;Kim, S.W.;Lee, H.S.;Park, E.S.;Kim, B.M.;Ko, D.C.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • The roll die forming (RDF) process is a new manufacturing technique for producing gear parts such as clutch drum and clutch hub in automotive transmission. In the RDF process, the material is deformed by a roll installed on a die set. Excellent productivity, low forming load and improved dimensional accuracy have quantitatively been shown to be the benefits of the RDF. In this study, the RDF process is applied to manufacture a clutch hub with a gear shaped part. A finite element (FE) analysis was performed in order to investigate the material strain field and dimension of the final product. Based on the result of the FE analysis, a RDF experiment was performed and the dimensional accuracy of the final product was validated. This work demonstrates that RDF is a process capable of producing a sound clutch hub.

Micro Channel Forming with Ultra Thin Metal Foil (초미세 금속 박판의 마이크로 채널 포밍)

  • Joo, Byung-Yun;Oh, Soo-Ik;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

A CAD/CAM System for Blanking or Piercing of Irregular Shaped-Sheet Metal Products (불규칙형상 박판제품의 블랭킹 및 피어싱용 CAD/CAM 시스템)

  • 최재찬;김철;박상봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.174-182
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design and machining of irregular shaped-sheet metal product for blanking or piercing operation. An approach to the CAD/CAM system is based on the knowledge-based rules. Knowledge for the CAD/CAM system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD and in customer tool kit on the SmartCAM with a personal computer and is composed of nine modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, strip-layout, die-layout, data conversion, modelling, and post-processor module. Based on knowledge-based rules, the system is designed by considering several factors, such as material and thickness of product, complexities of blank geometry and punch profile, diameter and material of a wire, and availability of press. This system is capable of generating NC data automatically according to drawings of die-layout module. Results which are carried out in each module will provide efficiencies to the designer and the manufacturer of blanking or piercing die in this field.

  • PDF