• 제목/요약/키워드: Die Material

검색결과 1,016건 처리시간 0.023초

자동차 내부 보강판 성형 금형 설계 (Design of Stamping Die for Inner Reinforcement Panel of Automotive)

  • 안동규;송동한;노경보;한길영
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.60-68
    • /
    • 2009
  • The objective of this paper is to design stamping die of inner reinforcement panel with DL 950 advanced high strength steel as stamping materials through numerical analyses and experiments. The stamping process was designed as bending dominant process consisting of 1 step of notching and 4 steps of bending processes. In order to obtain a proper design of the stamping die, various three-dimensional elasto-plastic finite element analyses were performed using a commercial code AUTOFORM V4.2. Design parameter of stamping die was chosen as the corner radius of the stamping die for each step. From the results of the FE analysis, feasible corner radii of the stamping die, which can minimize the deviation of corner angle of the stamped part from design data, and forming load for each part were estimated. Stamping experiments were carried out using the manufactured stamping die according to the proposed die design. The results of experiments were shown that the stamping die can successfully manufacture the inner reinforcement panel with DL 950 advanced high strength steel as base stamping material.

  • PDF

세미 프로그레시브 금형과 트랜스퍼 금형기술을 융합한 복합 자동화 금형 제조기술에 관한 연구 (Development of the Compound Die Forming Technology United between Semi-Progressive and Transfer Die)

  • 박동환;권혁홍
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.126-133
    • /
    • 2015
  • To enhance the productivity and quality of the compound process of progressive dies and transfer dies, the semi-progressive method is applied in the material supply step to produce blanks, and then the transfer method is applied. Parts are transferred among processes by means of the finger and transfer bar in the transfer die, and the final seat cushion panel is produced. The main challenge in the current study is how to deform a seat cushion panel while meeting the design specifications without any defects. In order to obtain this technology, a sheet metal-forming simulation and die forming of the seat cushion panel were adopted; as a result, a compound die-forming technology for the automotive seat cushion panel, combining both semi-progressive die and transfer die for continuous production, was successfully developed.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

용융염 침적법에 의한 VC Coating 금형강의 인성에 관한 연구 (A Study on the Toughness of Die Steel Coated with VC (vanadium carbide) by Immersing in Molten Borax Bath)

  • 이병권;남태운
    • 열처리공학회지
    • /
    • 제6권2호
    • /
    • pp.59-69
    • /
    • 1993
  • Bending fracture strength test and impact strength test were made for VC coated die steels treated by immersing in molten borax bath and for hardened steels which were quenched and tempered, in order to clarify the effect of VC coating at $1000^{\circ}C$. The material used in this investigation was representative cold and hot work die steels STD11, STD61. The results obtained are as follows. 1) The bending fracture strength of VC coated die steel (STD11, STD61) was lessened with increasing the thickness of the VC coated layer. 2) With increasing the immersing time (imcreasing the thickness of the VC coated layer) the maximum hardness was obtained at 480 minutes holding, after that holding time hardness was decreased. 3) The impact strength of the VC coated die steel was not decreased. In the casse of STD11, it was higher than that of the quenched condition especially at low tempering temperature, and vice versa at high tempering temperature. However in the case of STD61 shows the result to the contrary.

  • PDF

중공축 소재를 이용한 전후방 복합압출의 성형 특성 (Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe)

  • 김성현;이호용
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A study of interface heat transfer coefficient between die and workpiece for hot forging)

  • 권진욱;이영선;권용남;이정환;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

프레스 벤딩 공정에서 플랜지부의 마찰력이 스프링백에 미치는 영향에 대한 해석적 고찰 (Finite element analysis of spring back caused by frictional force in area of flange in press bending process)

  • 윤재웅;오승호;최계광;이춘규
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.63-69
    • /
    • 2021
  • Springback is an essential task to be solved in order to make high-precision products in sheet metal forming. In this study, materials with four different elastic regions were used. For the forming analysis, the change of springback caused by the frictional force generated in the flange part during hat shape forming was considered by using the AutoForm analysis program. Factors affecting frictional force were blank holder force, friction coefficient, bead R and bead height. As a result of the forming analysis, the springback increases as the material with a larger elastic region increases. In addition, as the frictional force of the flange part increased, the tensile force in the forming direction increased and the springback decreased. In particular, the blank holder force and friction coefficient had a great effect on springback in mild materials (DC04, Al6016), and the bead effectively affects all materials. Through this study, it was considered that the springback decreased as the material with a smaller elastic region and the tensile force in the forming direction increased.

상용 CAM시스템을 활용한 금형 형상부(CORE/CAVITY)의 가공에 관한 연구 (A Study on the Machining of Die Profile Using the CAM System)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.69-74
    • /
    • 2003
  • The purpose of the present paper is to investigate about the machining of profile (core/cavity) of mold die using the commercial CAM system. Recently the requirement of the light weight and high performance of automobiles has Increased. The weight of the automobile is very important in the viewpoint of the fuel and traveling performance. The optimal design technique, material technique, the process design for parts and specially, die machining technique need to be developed for increasing productivity and reducing production time of the automobile parts. In this study, the effect of machining condition on precision of die profile is investigated by experimental observation and analysis. The results will be reflected for development of the precision die of the automobile.

  • PDF

A COLD FORGING OF HELICAL GEAR FOR STEERING PINION

  • Kim M.E.;Kim Y.G.;Choi S.;Na K.H.;Lee Y.S.;Lee J.H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.59-62
    • /
    • 2003
  • The precision cold forging of helical gear for steering pinion has been studied. Because of the large helix angle, there are many difficult problems to control the material flow and part dimension. The die shape was proposed to improve the flow of workpiece. In order to improve the dimensional accuracy of forged part, a FE analysis was performed. The proposed die shape drives to flow amicably workpiece. The applied load was reduced up to 10 percent, compared to the conventional-shaped-die. The elastic deformation of die has been investigated quantitatively by the 3-dimensional FE analysis. The die-land has been expanded up to $10{\mu}m$ on loading stage, based on the FEM results. Therefore, the elastic deformation amounts should be taken into consideration to improve the dimensional accuracy of forged helical gear.

  • PDF

단일보강링 원통형 금형의 최적 설계용 CAD 프로그램 개발 (Development of a CAD program for optimal design of a cylinderical die with one stress-ring)

  • 신중호;손주리;류갑상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.556-561
    • /
    • 1988
  • Shrink-rings (Stress-rings) are used in the fabrication of dies for cold forming and powder compaction processes to increase the allowable pressures for a given die material. Optimum procedures are to minimize a die thickness under the conditions that the stress distributions in the die and stress-rings utilize fully the strength available in each of the die elements. This paper proposes a new approach, where the maximum allowable shrinking pressures are calculated on shrinkage plans in the radial direction and the fractional shrinking pressures below the maximum allowable pressures are used as the design values. Two criteria for the optimal die design are used: Maximum shear stress limit for one-piece dies and zero tensile stress limit for combined dies. A computer program, DIECOM, is developed for illustrating the computer-aided design procedures. Finally, examples for each case are presented in this paper.

  • PDF