• Title/Summary/Keyword: Die Manufacturing Technology

Search Result 616, Processing Time 0.027 seconds

An Experimental Study on the HEV/EV Traction Motor Rotor Core in Injection Molding Analysis (사출성형해석을 이용한 HEV/EV 구동모터 회전자 철심에 관한 실험적 연구)

  • Hong, Kyeong-Il;Jung, Hyun-Suk;Choi, Kyeo-Gwang;Kim, Se-Hwan;Lim, Se-Jong
    • Design & Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • The HEV/EV Traction Motor Core manufacturing technology is a core component of Traction Motor Core is a key technology for the manufacture of eco-friendly automotive industry is essential for the competitiveness of the country must obtain the technology. This study was performed to develop a Rotor Core of the HEV/EV Traction Motor using the first time in Korea multi-gate BMC injection molding technique. Executed by the experiment of this study are as follows. Study 1: Developed a multi-gate BMC injection mold for the magnet fixed to the Rotor Core. Study 2: Developed a production implementation and manufacturing technology of the Rotor Core. In this study, the develop products and manufacturing technologies implemented by the BMC injection mold development for Magnet fixed to the Rotor Core and the results are discussed.

  • PDF

A study on the manufacturing of metal/plastic multi-components using the DSI molding (DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구)

  • Ha, Seok-Jae;Cha, Baeg-Soon;Ko, Young-Bae
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

A Study on the Development of Practical and Adaptive Progressive Die for Very Thick Sheet Metals (후판재료에 대한 실 적응성 프로그레시브 금형 개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg;Song, Young-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • In the field of design and making tool for press working, the progressive die for very thick sheet metal(SS41, 4mm) is a specific division. In order to prevent the defects, the optimum design of the production part, Strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal working process and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi stage and tried out through the I-DEAS, DEFORM, and CAD/CAM application. Out of these processes, the die development could be taken advanced technology. Especially the result of try out and its analysis become to the characteristic of this study.

  • PDF

The Surface Roughness of Injection Product according to the change of Injection Conditions (성형조건에 따른 성형품의 표면 거칠기 변화)

  • Park, Joon-Hyoung;Kim, Kuy-Bok;Yoon, Se-Kwon;Lee, Hyeon-Woo;Kim, Sun-Kyung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • Currently, injection molding process is a very useful technique that be applied to many field. And injection molding technology has been commercial based on many studies. However, there is no standard of surface roughness because there are few studies about surface technology of injection product. In addition, when designing the mold, changes of the core surface and the injection conditions are not considered. In this paper, change of surface according to the core and the injection conditions was compared with the surface of the injection product. Accumulation of these technologies will propose direction in mold design, manufacturing and injection molding technology.

  • PDF

A study on the Assessment of Component Technology in Press-Die Making of Car Panel (자동차용 판넬의 프레스금형 제작에서의 요소기술의 평가에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.85-91
    • /
    • 1998
  • In this paper an assessment has been proceeded about component technology that stamping car panel can be designed and manufactured efficiently. Also this study investigate standard model of CAD/CAM system in production process of automobile dies, Recently, motor companies are doing their best to increase productivity and to reduce production time. So to develop user-friendly and effective standard model of CAD/CAM system is very important. The cbtained results will lead to the reductions in lead time and man-hour required for the design and manufacture of the automobile dies.

  • PDF

A study on rapid tooling technology using thermal spray process (아크 용사를 이용한 쾌속 금형 제조 기술)

  • Kim, Kyung-Hwa;Kim, Sun-Kyung;Yu, Young-Eun;Jea, Tae-Jin;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.20-24
    • /
    • 2008
  • Recently, the study for production technology is focused on cycle time reduction as various products are manufactured. In order to manufacture tool and die, rapid prototyping and rapid tooling are researched. Stereolithography apparatus, selective laser sintering, 3D printing, laminated object manufacturing are developed in rapid prototype. The purpose of this study is to develop rapid tooling technology using thermal spray process. This technology is not well-known to korea, but this study will be contributed in development of domestic molds industry through continuous research and development.

  • PDF

Process Improvement of Automobile Die using AutoBlank (오토블랭크를 이용한 자동차 금형의 공정개선)

  • LIM J. Y.;Kim S. J.;Lee J. M.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.358-363
    • /
    • 2001
  • In sheet metal forming, material cost and die process number are very important manufacturing process for an economic die-making. In this report on implemention of a computer aided sheet-metal nesting program for nesting of irregular shaped blank on ae coil strip of limit width. The result of the computing in the nesting program reduced material cost and die process number.

  • PDF

Closed Forging of Car Gear Blanks on Hot Die Presses

  • yujian Wu;tingsong Wu;yipping Zhao;ji Li
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.127-132
    • /
    • 2003
  • This article mainly introduces the research of closed forging on 20MN hot die forging presses. After transforming of the equipments, optimizing of die design and improving of die-manufacturing precision, gear blanks used in car gearbox have been forged out without fins successfully.

  • PDF

Addendum Surface Modeling in Draw Die Design for Stamping Automotive Panels (자동차 프레스 패널 성형을 위한 드로 금형의 어덴덤 곡면 모델링)

  • Chung, Yunchan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1018-1024
    • /
    • 2013
  • In the process of draw die design for stamping automotive press panels, the addendum surfaces generated in metal forming simulation software cannot be used in downstream processes such as machining and making draw dies because simulation tools use simple discrete models for the surface geometry. The downstream processes require more precise and continuous geometric models such as NURBS surfaces. Generally, automotive die engineers manually regenerate the addendum surface geometry using the discrete model. This paper presents an automated geometric modeling process for generating addendum surfaces using draft surface models. The design parameters of the section curve for the addendum surfaces are extracted automatically from the draft geometry. Using the extracted design parameters, smooth addendum surfaces are generated automatically as NURBS surfaces. The generated surfaces are $G^1$ continuous with the part surface and the binder surface, and can be used in downstream processes.

Development of an Automatic Design System of Progressive Die for making CPT grid (칼라화상관 전극 프로그레시브금형의 자동설계시스템개발)

  • 한규택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.14-20
    • /
    • 1998
  • This paper describes a computer-aided die design system of progressive die for making CPT grid. An approach to the development of the automatic design system is based on knowledge-based rules. The developed system is designed by considering several factors, such as grid geometry and punch profile. Grid, a key component of electronic gun, is formed through a sequence of many operations, among which the pilot piercing, beading, notching, bending, swaging and slotting etc. Using the developed system, design parameters are determined and output is generated in graphic forms. Therefore the developed system provides part drawing and the assembly drawing of die set.