• 제목/요약/키워드: Die Manufacturing Technology

검색결과 629건 처리시간 0.024초

고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향 (Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting)

  • 김철우;김영찬;김정한;조재익;오민석
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.805-812
    • /
    • 2018
  • High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.

앨터네이터 로터폴의 단조가공에서 공전개선과 금형제작에 관한 연구 (A Study on the Manufacturing of Die and Improvement of Process in Fiorging Work of Alternator Rotor Pole)

  • 김세환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.54-61
    • /
    • 1997
  • Furthermore the rothor pole, with a solid type, manufactured by cold forging process at present should dmploy 3 press lines which consist of total 7 processes. Since A.S.B. treatment is prerequisite for the press line, the 3 times of A.S.B. treatment requires a long lead time, with little contribution to the reduction in cost. The author has investigated, through this researach, the possibility of a new forging method for a rotor pole production with (1) 2 pass instead of 3 press lines (2) only one A.S.B. treatment instead of 3 ones (3) solid type instead of sectional type, and (4) improvment of material property during process using a modified forging process and a specially designed die.

  • PDF

금형면 자동 다듬질 전문가 시스템 개발에 관한 연구-I -DB 구축을 위한 회전 및 진동 연마 가공의 실험적 연구- (Development of an Expert System for Optimizing Die and Mold Polishing-I)

  • 민헌식;이성환;안유민;조남규;한창수
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.38-44
    • /
    • 2002
  • In manufacturing die and mold, polishing: is important as it takes as much as 50% of the production cost. In this research, an attachable type polishing device to a WC machining center was developed. experiments were done with a special1y designed rotation type polishing device. Also an ultra-sonic (vibration type) waving device was introduced to acquire finer surface finishes. From the constructed data base based on the experimental results, it is shown that optimal polishing conditions are generated by the combined use of the rotation type tool and the vibration type tool.

볼엔드밀 가공시 절삭깊이와 가공위치의 변화에 따른 표면정밀도 (Surface Precision due to Change of Cutting Depth and Cutting Location when Ball End Milling)

  • 박성은;왕덕현;김원일;이윤경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.274-278
    • /
    • 2000
  • Ball end milling process is widely used in the die and mould manufacturing because of suitableness for the machining of free form surface. But, as ball end mill is long and thin, it is easily deflected by cutting force. In this study, Cutting force, tool deflection and surface precision was measured according to the change of depth and cutting location. Cutting force was acquired with tool dynamometer and a couple of eddy-current sensor measured tool deflection in x-y direction each. After machining, surface precision was measured with roundness tester and coordination measuring machine for sculptured surface angle change and cutting depth.

  • PDF

특징형상을 사용한 사출금형 표준 가공공수계산 (Standard Operation Time Estimation Using Features in Mold Die Manufacturing)

  • 이충수;노형민
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.223-231
    • /
    • 1994
  • When manufacturing mold dies, an operation sheet is required for each part of the mold dies. The consistent estimation of standard operation time in the operation sheet is difficult, because the estimation is mainly based on subjective judgement. In order to resolve it, concept of feature is introduced in this study. For CAD/CAPP integration, feature technology is being implemented to represent geometrical and technological information of part drawings. A feature database has already been designed, and then used to generate data for process and operation planning modules. Related to this former research, standard operation time is calculated using the feature information and tables used in a real factory.

중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계 (Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail)

  • 박정현;이경훈;김성민;김희중;김성진;김병민
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

The Bending minimization of Joint Shat in Cross rolling

  • Park Joon Soo;Lim Seong Joo;Yoon Duk Jae;Choi Seogou
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.107-114
    • /
    • 2003
  • Although cross rolling process has many advantages in forging a joint shaft, an automotive component of front axle unit, subsequent process is necessary to straighten its bending during forging process. In this paper the bending minimization of the joint shaft was studied to eliminate such an additional process. First of all, a characteristic diagram was used to find out factors affecting the bending of the shaft. Also design of experiments was utilized for estimating the influence of those factors. It was found that the phase angle, which is the difference in starting positions between upper and lower dies, was important to minimize the bending of joint shaft and die cooling is necessary to diminish the distribution of bending.

  • PDF

CO2 레이저 빔 조사에 의한 프레스 금형재료의 표면경화 특성 (Characteristics of Surface Hardened Press Die Materials by CO2 Laser Beam Irradiation)

  • 양세영;최성대;최명수;전재목
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.31-37
    • /
    • 2011
  • Recently, the technology of surface treatment is being more important which affects the material cost reduction and substitution to the expensive material. The material used for the mechanical processing should have not only high intensity, but also strength toughness, wear resistance and corrosion resistance. In order to increase the durability and have better quality of the parts using such kind of tooling material, various kinds of research of the surface hardening through many kinds of heat resources is being done and practically applied. In this study, the characteristics of hardening surface zone for high strength of the press die material through laser beam irradiation are researched. In this study, it is experimentally observed by the status of the surface morphology, tensile strength, the hardness distribution of the base metal and wear condition by the surface hardness pattern by the laser beam based on the process parameters of $CO_2$ laser by using SM45C and STD11 used for press tool. Through this research, the characteristics of surface hardened zone for high strength of the thin metal by laser beam irradiation is done.

증육된 벽부를 가진 더블 싱크 제품의 프로그레시브 금형 설계 (Progressive Die Design for a Component of Double Sinks with Locally Thickened Wall)

  • 장원석;최홍석;이희도;강신철;안국찬;김병민
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.508-516
    • /
    • 2010
  • Thickening process in sheet metal forming is being increased to improve the strength as well as to reduce manufacturing process such as welding. This process can make it possible to obtain part locally thicker than that of initial sheet thickness. In this study, design method for manufacturing the component which has double sinks with local thickened wall is proposed. Deep drawing and upsetting processes are applied in order to form double sinks and thicken its walls. Used material is SPHC440 with the thickness of 2.0mm and initial blank size is determined on the basis of the final product. Distance between the center of double sinks and first drawing ratio to avoid fracture are the most significant factors during deep drawing. FE-analysis is implemented in order to determine the appropriate values. Progressive die is designed based on the proposed method and FE-analysis. As a result of experiment, locally thickened component can be manufactured, which has double sinks with the thickness about 3mm at the corner and wall.

파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구 (Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material)

  • 서영진
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.