• Title/Summary/Keyword: Die Face

Search Result 63, Processing Time 0.022 seconds

A Study on the Optimization of Press Forming of Aluminum Door Hinge Face Parts in Automobiles (자동차 바디용 알루미늄 도어 힌지 페이스 부품의 프레스 성형 최적화에 관한 연구)

  • Seok-Joong Kim;Min-Jun Kim;Won-il Choi;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2023
  • The research direction of the automobile industry worldwide is speeding up research to improve fuel efficiency through weight reduction as the weight of automobiles increases due to environmental problems, convenience demands, and safety problems. As a way to solve weight reduction, there is a method of improving mechanical properties by improving the development and manufacturing method of lightweight materials with replaceable mechanical properties. Therefore, research on the molding and processing technology of aluminum, which is a lightweight material, is being actively conducted. In this study, aluminum material was applied. By using Autoform S/W, a press forming analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. In this study, aluminum material was applied. By using Autoform S/W, a press molding analysis program, the blank holding force, mold die R, and bead restraint force were selected in three levels, respectively, and the results and optimization of formability and shape freezing were carried out. The optimized results were confirmed by comparative analysis of formability and Spring Back. As a result of the experiment, it was possible to confirm the result value of the Spring Back of the final product according to the tensile change of the material.

면삭밀링의 합리적인 표준시간 계산방법에 관한 연구

  • 박규생;김준안;김선태;김병현;정성련
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.250-255
    • /
    • 1992
  • This paper discusses how to develop a standard time for face cutting. The discussion focusses especially on the useful experert and law data for automated generate standard time purposes. Make standard time is a means to realize the process planning. Also process planning is a process which expresses design. In past times, a process planning was done using only experience of expert. But nowadays many people try to make automated process planning. This paper discusses standard time of the face cutting, but except making process sequence. In order to make standard time, some rules have to be generated and some industrial data found out. So we can calulate standard time in die. This is to easer and to correct calulate standard time. Using some rules that are application oriented to every parts of die.

Binder Wrap Analysis considering Gravity, Contact and Friction (접촉과 마찰을 고려한 바인더 랩의 유한 요소 해석)

  • 유동진;이종민;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.87-95
    • /
    • 1996
  • The stamping process consists of two stages : First, the blank is held by the blank holder and then it is further formed into the die cavity by punch stroke. In actual stamping process, the accurate prediction of binder wrap is an indispensable step in sheet metal forming analysis because the initial plastic buckling induced by improper die design is directly related with fatal defect at the final stage. In the present work, an approach including the gravity effect of blank material and proper consideration of contact and friction is proposed. Computations are carried out for some actual auto-body parts using 3D FEM code to investigate the validity of the proposed methodology. Comparisons with experimental results show that the suggested scheme can be effectively applied to the precise prediction of binder wrap for arbitrarily curved die faces in which gravity and contact effect must be taken into account.

Kinetic Analysis of the Probability of Hexagonal Face in Juryeonggu (주령구에서 육각면이 나올 확률에 대한 운동역학적 해석)

  • Yoo, Wan Suk;Lee, Jeong Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1085-1089
    • /
    • 2017
  • Juryeonggu is a cuboctahedral die that was used during the Silla period in ancient Korea. This cuboctahedral die consists of two different penal servitudes of 14 sides; however, its equal probability distribution enables it to be used as a die. In this paper, a precise cuboctahedral die, Juryeonggu, was manufactured, and its probability was measured through experiments. Next, the probability was verified through Multibody-dynamics (MBD) modeling and analysis, and the effect of the coefficient of friction on the probability distribution was studied.

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

FE Analysis on the Serrated Forming Process using Multi-action Pressing Die (복동금형을 이용한 돌기성형공정에 관한 유한요소해석)

  • Jang, D.H.;Ham, K.C.;Ko, B.D.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.429-435
    • /
    • 2008
  • In this paper, the serrated forming process is analyzed with finite element method. The seal should secure the overlapping portions of ligature, which has teeth for ligature to prevent from slipping each other after clamping. In the simulation, rigid-plastic finite element model has been applied to the serration forming process. Serration or teeth forming characteristics has been analyzed numerically in terms of teeth geometry based on different forming conditions. Analyses are focused to find the influence of different die movements and geometries on the tooth geometry, which is crucial for securing overlapping portions of ligature. Two major process variables are selected, which are the face angle and entry angle of punch, respectively. Extensive investigation has been performed to reveal the influences of different entry and face angles on the geometry of teeth formation in the simulation. Three different face angles of punch have been selected to apply to each simulation of serrated sheet forming process with every case of punch entry angles. Furthermore, tooth geometries predicted from simulation have been applied to the indention process for comparing proper tooth geometries to secure the sealing.

THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE (석고 다이에 대한 다이 강화제의 영향)

  • Kim, Young-Rim;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

Development of a Sensor Information Integrated Expert System for Optimizing Die Polishing (최적 금형연마 가공을 위한 센서 정보 통합 전문가 시스템 개발)

  • 김화영
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.128-135
    • /
    • 2000
  • This paper presents a polishing expert system integrated with sensor information which can modify the polishing sequence and conditions initially determined by the system depending on the on-site polishing status. A practical system using AE sensor to detect the on-line polishing status is developed for the rotational polishing and the smoothly curved sur-face. Database and knowledge base for polishing processes are established by using the results of experiments and also expert's experience. Evaluations are performed for a die of headlight lamp by using both the sensor integrated expert sys-tem and the expert system without sensor. The test results show that the sensor integrated expert system provides more optimal polishing conditions since the proposed system takes advantage of on-line sensor information.

  • PDF

Development of Local Modification Functions for Edge Rounds on Shell Meshes (쉘 메쉬 모델의 모서리 라운드 탐색 및 수정 기능)

  • 이원경;이상헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.624-627
    • /
    • 2000
  • This paper describes a local modification capability on shell meshes, which can change a 'constant or variable radius of rounding for the s h q edges of the stamping die shoulder in the mesh. The algorithm consists of the followin_e three main steps; (1) the rounding area for sharp edges of a die shoulder are detected from the given shell mesh, (2) a rolling-ball surface with a given constant or variable radius is generated, which is contacti% with two incident face groups of the sharp edges, (3) the rounding area of the mesh is cut off, and a new mesh for the rolling-ball surface is generated and implanted into the gap. Owing to this rounding modification capability, CAE engineers can examine various cases based on the existing dies by scanning them to form polyhedral models and then changing radii of die shoulders for stamping process simulation.

  • PDF