• Title/Summary/Keyword: Die Design Parameters

Search Result 231, Processing Time 0.027 seconds

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF

Effects of Design Variables on Compression Rate of Wire in Connector Crimping Process of Wire Harness Using FEM (와이어 하네스의 압착공정에서 설계변수가 압축률에 미치는 영향 연구)

  • Gu, S.M.;Choi, H.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • Recently industry of motor vehicle is making a gradual progress of automotive electric components. According to this step, wire harness equipped at motor vehicle is also increased. The most important component at the wire harness is electric connector. At the manufacturing process of electric connector, exactly at the crimping process, design variables, such as clamping-height, clamping-width and clamping die shape are critical parameters to assure satisfactory harness shape in clamping process of electric connector. In this study we have performed FEM simulation for clamping process and clarified the effect of design variables on compression rate of wire.

Machining experimental and characteristic analysis of vaporized amplification sheets according to selection of high-power density electron beam drilling parameters (고출력 전자빔 드릴링 가공 파라미터 선정에 따른 증기화 증폭 시트의 가공 실험 및 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Wi, Eun-Chan;Lee, Joo-Hyung;Kang, Jun-Gu;Kim, Jin-Seok;Kang, Eun-Goo;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • Recently, research on precise parts required in aerospace, ship, and automobile industries has been actively conducted. In this paper, electron beam drilling machining parameters were selected and experiments were conducted to compare processing characteristics analysis according to machining parameters through machining experiments of a vaporization amplification sheet to which STS 304 was applied. Also, as a result of measuring the machining. As the thickness gradually increased, it was confirmed that the electron beam could not reach the vaporization amplification sheet and thus melted on the surface of the material. As a result of the experimental analysis, it was analyzed that the vaporization explosion reaction of the vaporization amplification sheet was not normally performed due to the working distance (WD) according to the material thickness.

Analysis and Experiments on the Thread Rolling Process for Micro-Sized Screws Part I: Process Parameter Analysis by Finite-Element Simulation (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part I: 유한요소 해석기반 공정변수 영향분석))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.581-587
    • /
    • 2011
  • The production of high-precision micro-sized screws, used to fasten parts of micro devices, generally utilizes a cold thread-rolling process and two flat dies to create the teeth. The process is fairly complex, involving parameters such as die shape, die alignment, and other process variables. Thus, up-front finite-element(FE) simulation is often used in the system design procedure. The final goal of this paper is to produce high-precision screw with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ (M0.8${\times}$P0.2) by a cold thread rolling process. Part I is a first-stage effort, in which FE simulation is used to establish process parameters for thread rolling to produce micro-sized screws with M1.4${\times}$P0.3, which is larger than the ultimate target screw. The material hardening model was first determined through mechanical testing. Numerical simulations were then performed to find the effects of such process parameters as friction between work piece and dies, alignment between dies and material. The final shape and dimensions predicted by simulation were compared with experimental observation.

Development of Press Forming Technology for the Multistage Fine Tooth Hub Gear (다단 미세 치형 허브기어의 프레스 성형기술개발)

  • Kim Dong-Hwan;Ko Dae-Cheol;Lee Sang-Ho;Byun Hyun-Sang;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.44-51
    • /
    • 2006
  • This paper deals with the aspects of die design for the multistage fine tooth hub gear in the cold forging process. In order to manufacture the cold forged product for the precision hub gear used as the ARD 370 system of bicycle, it examines the influences of different designs on the metal flow through experiments and FE-simulation. To find the combination of design parameters which minimize the damage value, the low gear length, upper gear length and inner diameter as design parameters are considered. An orthogonal fraction factorial experiment is employed to study the influence of each parameter on the objective function or characteristics. The optimal punch shape of fine tooth hub gear is designed using the results of FE-simulation and the artificial neural network. To verify the optimal punch shape, the experiments of the cold forging of the hub gear are executed.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

Development of Press Forming Technology for the Multistage Fine Tooth Hub Gear (다단 미세 치형 허브 기어의 프레스 성형기술개발)

  • Kim D.H.;Lee J.M.;Lee S.H.;Byun H.S.;Kim B.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.769-772
    • /
    • 2005
  • This paper deals with the aspects of die design for the multistage fine tooth hub gear in the cold forging process. In order to manufacture the cold forged product fur the precision hub gear used as the ARD 370 system of bicycle, it examines the influences of different designs on the metal flow through experiments and FE-simulation. To find the combination of design parameters which minimize the damage value, the low gear length, upper gear length and inner diameter as design parameters are considered. An orthogonal fraction factorial experiment is employed to study the influence of each parameter on the objective function or characteristics. The optimal punch shape of fine tooth hub gear is designed using the results of FE-simulation and the artificial neural network. To verify the optimal punch shape, the experiments of the cold forging of the hub gear are executed.

  • PDF

Process Design of Multi-Step Wire Drawing using Artificial Neural Network (인공신경망을 이용한 다단 인발 공정 설계)

  • Kim, Dong-Hwan;Kim, Dong-Jin;Kim, Byeong-Min
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.127-138
    • /
    • 1998
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network) has been considered. The investigated problem involves the ade-quate selection of the drawing die angle and the correspondent reduction rate in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite ele-ment simulation are selected by using the orthogonal array. Also the orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study it is shown that the application of new technique using ANN and Othogonal array table to the process design of metal forming process is useful method.

  • PDF

Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race (원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구)

  • Kim, Hwa-Jeong;Jin, Chul-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method (다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석)

  • 백승엽;권재욱;이경돈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF