• Title/Summary/Keyword: Die Design Parameters

Search Result 231, Processing Time 0.026 seconds

Design of cooling channel in hot press forming process of Boron Steel (보론강 고온 성형 공정의 냉각 채널 설계)

  • Hong, S.M.;Ryu, S.Y.;Park, J.K.;Yoon, S.J.;Kim, K.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.367-370
    • /
    • 2009
  • Recently, ultra high strength products can be manufactured by the hot press forming process of Boron steel in automotive and electronics industries. In order to get high strength, the hot press forming should be accompanied by quenching process inducing phase transformation. In the study, the heat conductive die and the cooling channel were designed by the numerical simulation and the effect of three different parameters were determined to improve cooling characteristics.

  • PDF

An Automated Process Planning System for Blanking of Stator and Rotor Parts and Irregularly-Shaped Sheet Metal Products (스테이터와 로터 및 불규칙한 박판제품의 블랭킹에 관한 공정설계 시스템)

  • Park, J.C.;Kim, B.M.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.46-53
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing for stator and rotor parts and irregularly shaped sheet metal by press. An approach to the system is based on knowledge based rules. The process planning system by considering a blank layout for nesting of irregularly shaped sheet metal and an improved strip layout for stator and rotor parts and irregularly shaped sheet metal is implemented. Using this system, design parameters(utilization ratio, slitting width, pitch, working order, die blank shapes) are determined and output is generated in graphic forms. Knowledges for blank layout and strip layout are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blanking companies. The implemented system provides powerful capabilities for process planning of stator and rotor parts and irregularly shaped sheet metal.

  • PDF

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

Finite Element Analysis and Its Verification of Springback in L-bending to Evaluate the Effect of Process Design Parameters (L-벤딩에서 공정 설계변수가 스프링백에 미치는 영향의 평가를 위한 유한요소해석 및 검증)

  • Cho, M.J.;Kim, S.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • A parametric study was conducted on the effects of five fundamental design parameters on springback, including die clearance, step height, step width, punch radius, and taper relief in an L-bending process, controlled by the compression force. The experiment was also conducted to verify the usefulness of the parametric study procedure for process design, as well as the finite element predictions. The elastoplastic finite element method was utilized. The L-bending process of the york product, which is a key part of the breaker mechanism, was employed. The deformation of the material was assumed to be due to plane strain. Five samples of each design parameter were selected based on experiences in terms of process design. The finite element predictions were analyzed in detail to show a shortcut towards the process design improvement which can replace the traditional process design procedure relying on trial-and-errors. The improved process design was verified to meet all the requirements and the predictions and experiments were in good agreement.

Determination of Forming Conditions of Fitting Pipes using Press Forming Processes (프레스 포밍 공정을 이용한 피팅 파이프 성형 조건 선정)

  • Kim, Tae-Gual;Park, Young-Chul;Park, Kyoung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • The press bulging process is very useful and productive method to produce round-type mechanical components which have not been able to be manufactured because of limitation of the conventional press technology. The application of the press bulging process has expanded very quickly in the hydraulic and electronic industry and more recently it has been used to produce other mechanical parts such as the automobile and shipping parts. This expanding application also has brought some unsolved problems and leads many researchers to put their effort into the die design of the press bulging process. In this study, to obtain the optimum die shape for the press bulging process, various process parameters have been considered such as corner radius, bulging height, pressing length, and forming load, etc. The main interest of this paper is to verify the press bulging process which has more than 4.0 in height-length ratio. From this aspect, Finite Element analysis shows great ability to simulate the precise deformation process and gives us manufacturing database. Consideration of strain, stress, and strain-rate for the various cases has been also taken to keep the forming load within a particular range.

A Study on Forging Process about Preform of Articulated Piston for Diesel Engine (디젤 엔진용 분절 피스톤의 예비성형체 단조 공정 연구)

  • 염성호;이병섭;노병래;서기석;홍성인
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.635-641
    • /
    • 2004
  • Today the specific outputs of modern supercharger DI diesel engine for passenger cars reach values exceeding 50kw/1. By development of the articulated piston, specific output of up to 70kw/1 are sought. In doing so, peak cylinder pressure increases from the current 14-16MPa to 18-20MPa. The Articulated piston was composed Al cast skirt part and steel forged crown part. We have the target fer the design of forging process and die of the steel forged crown part. The design parameters of the forging process of the piston were obtained by the forging industry experiences and our experimental data and analysis result of finite element simulation. Especially, the design parameter of preform in blocker die was decided by finite element simulation using numerical package DEFROM3D. And also we can verify the design parameter by conducting visio-plasticity test using plasticine material. When we compared the results of analysis and experiment, a metal flow and load curve showed good agreement. Through this research, we could design optimal preform shape of articulated piston for this supercharged DI diesel engine.

Experimental and FE Analyses of Hot Curvature-Forming for Aluminum Thick Plate Using Grid-Typed Hybrid Die (격자형 하이브리드 금형에 의한 열간 알루미늄후판 곡면성형공정해석 및 실험)

  • Lee, I.K.;Lee, J.M.;Son, Y.K.;Lee, C.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • The hot curvature-forming of large aluminum thick plate using a grid-typed hybrid die is a process for the production of a spherical LNG tank. Many variables such as the initial die surface quality, grid size, grid thickness, size of blank plate and cooling line design, control the success of the process. In addition, the plate used in this process is generally larger than $10{\times}10m$ in size. Thus, it is very difficult to predict the surface characteristics of the plate during forming and to measure the different parameters due to the high cost of the experiments. In order to optimize the process design for the grid-type die, the development of an analytical method to predict the surface characteristics of the final product in hot curvature-forming is needed. This paper described the development of the method and procedures for FE simulations of the hot curvature-forming process, including hot forming, air flow, cooling, and thermal deformation analyses. An experiment for a small scale model of the process was conducted to check the validity of the numerical method. The results showed that the curvature of the plate in the analysis agrees well with that of the experiment within 0.037 and 0.016% tolerance margins for its side and corner, respectively.

Effects of Initial Slug Design on the Earring of a Rectangular Battery Case During Impact Extrusion (충격압출 공정에서 초기 슬러그 디자인이 사각 배터리 케이스의 이어링에 미치는 영향 분석)

  • Lim, J. H.;Choi, S.;Chung, W. J.;Shin, J. H.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.425-430
    • /
    • 2015
  • In the current paper, the effects of initial slug design on the earring of an Al rectangular battery case manufactured by impact extrusion were studied. During impact extrusion, non-uniform metal flow between the long and the short sides of the battery case leads to earring, which is subsequently trimmed. Process parameters such as friction, aspect ratio of the battery case, the die shape and the forming temperature tend to induce earring because they cause greater non-uniform metal flow. Large aspect ratio of the battery case and high friction between slug and die can greatly affect the earring of a rectangular battery case. To make a rectangular battery case without earring, it is necessary to control metal flow uniformly during impact extrusion. One of the ways to reduce the earring is to control the metal flow of slug at the initial upsetting stage. To analyze the effects of the initial slug design on earring, FE analysis was conducted using DEFORM 3D. Two types of initial slug designs were evaluated where volume was removed along either the width or thickness directions. The results show that the initial slug design can be effective in adjusting the uniformity of metal flow.

Extrusion-cooking Using Twin-screw Extruder on Cordyceps Pruinosa (이축 압출 성형기를 이용한 붉은자루 동충하초의 압출 성형)

  • Kim D. E.;Sung J. M.;Kang W. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.8-16
    • /
    • 2005
  • The extrusion-cooking condition on Cordyceps pruinosa was designed using twin-screw extruder. Response surface methodology (RSM) was used to investigate extrusion-cooking using a central composition design with varying die temperature $(114-146^{\circ}C)$, feed moisture $(22-38\%)$, feed rate (4-14 ka/h) and screw speed (120-280 rpm). System parameters (die pressure and specific mechanical energy (SME)) and extrudate parameters (density and water solubility index (WSI)) were statically analyzed using RSH. Die pressure was significantly affected by temperature, moisture contents and feed rate. SM was affected by screw speed and feed rate. When die temperature is $130^{\circ}C$ and moisture content $25\%$, the optimum pressure is shown. SME is about 20 Wh/kg, when feed rate is $10\~12kg/min$ and screw speed $200\~250rpm$. WSI was affected by temperature and moisture contents. Density was not affected by any factor. WSI increases by $7\%$ from about $23\%$ to about $30\%$, as temperature is raised from $120^{\circ}C\;to\;140^{\circ}C$. The WSI of Cordyceps pruinosa pulverized after extruding (PE) is about $26.97\%$ higher than that of raw material and $10\%$ higher than that of pulverized after drying (PD). The content of unsaturated fatty acid were not significantly different in PD and PE. Anti-oxidative activity of PE was 1.67-2.2 times higher than that of PD in Cordyceps pruinosa using 1- dipheny1-2-picrylhydrazyl method (DPPH).

A Study on the Computer Aided Process Design of Multi Stage Cold Forging of Rotationally Symmetric Parts (축 대칭 다단 냉간단조의 공정 및 금형 설계자동화에 관한 연구(I))

  • Choi, Jae-Chan;Kim, Hyung-Sub;Huh, Man-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.84-93
    • /
    • 1989
  • This paper describes some development of Computer-Aided Process Planning System for cold-forging of rotationally symmetric parts(soild shape and solid-can combined shape) produced by the presses or formers. Using the developed system, forming sequences for producing final product are generated as graphic forms and process names, preform dimensions and process parameters(load, punch pressure, die pressure) are generated as routing sheets. Konwledges for forming sequence and process parameters are extracted from process limitations, plasticity theories, handbooks, relevent refferences and empirical know-how of experts in cold forging companies. Among extracted knowldeges, general and consistent knowledges are represented as design rules and are constructed as knowledge base. The developed system provides more powerful tool for through checking the producibilities of design, conformation of appropriate forming sequences and discoveries of new possibility. The results of the developed system are in good agreement with the practical data.

  • PDF