• Title/Summary/Keyword: Die Cooling System

Search Result 57, Processing Time 0.028 seconds

Comparison of cooling effects according to cooling methods in injection mold (사출금형의 냉각회로 종류에 따른 냉각효율의 비교)

  • Noh, Keon-Cheol;Jang, Min-Kyu;Je, Deok-Keun;Choi, Yoon-Sik;Jeong, Yeong-Deuk
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.10-13
    • /
    • 2014
  • Plastic products are producted more than 70% of total processes by the injection molding. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The time and system of cooling affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. This study shows comparative study about cooling efficiency of spiral channel and baffle and observed the variation of time to freeze of molding As the result of CAE experiments, cooling rate by spiral channel had faster than baffle and as freeze time was decreased. Results of this study will be used widely to design for cooling system of injection mold.

  • PDF

A Study on Design Automation of Cooling Channels in Hot Form Press Die Based on CATIA CAD System (CATIA CAD 시스템 기반 핫폼금형의 냉각수로 설계 자동화에 관한 연구)

  • Kim, Gang-Yeon;Park, Si-Hwan;Kim, Sang-Kwon;Park, Doo-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.147-154
    • /
    • 2018
  • This paper focuses on the development of a support system that can rapidly generate the design data of a hot-form die with cooling channels, commonly known as hot stamping technology. We propose a new process for designing hot-form dies based on our (automated) system, whose main features are derived from the analysis of the design requirements and design process in the current industry. Our design support system consists of two modules, which allow for the generation of a 3D geometry model and its 2D drawings. The module for 3D modeling automation is implemented as a type of CATIA template model based on CATIA V5 Knowledgeware. This module automatically creates a 3D model of a hot-form die, including the cooling channels, that depends on the shape of the forming surface and the number of STEELs (subsets of die product) and cooling channels. It also allows for both the editing of the positions and orientations of the cooling channels and testing for the purpose of satisfying the constraints on the distance between the forming surface and cooling channels. Another module for the auto-generation of the 2D drawings is being developed as a plug-in using CAA (CATIA SDK) and Visual C++. Our system was evaluated using the S/W test based on a user defined scenario. As a result, it was shown that it can generate a 3D model of a hot form die and its 2D drawings with hole tables about 29 times faster than the conventional manual method without any design errors.

Optimal Design and Die Manufacturing of an Axial Fan for Cooling Towers (냉각탑용 축류팬 설계 및 금형제작의 자동화)

  • Kang, Jae-Gwan;Lee, Hak-Sun;Oh, Kun-Je;Jung, Jong-Youn
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.717-724
    • /
    • 2000
  • In this paper, an integrated system of optimal design, performance evaluation, and die design and manufacturing of axial fans for cooling tower is presented. The design and performance evaluation are developed based on three dimensional flow analysis so as to ensure low noise and high efficiency. The methodologies are implemented on computer as a GUI system including 3-D surface modeling and 2-D drawing file output modules. The CAD/CAM system is engaged to design the die and generate NC tool path, but the processes are also automated and integrated into the system by means of a part program coded from the design data. It is shown that the newly developed fans have superior performance and shortened lead-time compared to the existing dead-copied fans.

  • PDF

Development of Rapid Cooling System for Injection Mold (사출금형의 급속냉각시스템 개발)

  • Moon, Young-Bae;Choi, Youn-Sik;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.111-114
    • /
    • 2008
  • The Injection molding is used more than 70% of total production in plastic products. The injection molding process has 4 processes such as filling, packing, cooling and ejecting. It spends most of times in the cooling process. Therefore, it is important to control the mold temperature in producing plastic products. The cooling system and time affect the product's quality and productivity. Especially, cooling time has about 60% of total injection cycle time. Therefore, we can improve a productivity by shortening cooling time. In this study, the rapid cooling system was developed and performed a efficiency test. This system could refrigerate coolant to $1^{\circ}C$ and had to need 10 minutes for normal operating. However, if response time of temperature controller and sensor will be increased, the performance of this system will increase.

  • PDF

Evaluation of Diecasting Mold Cooling Ability by Decompression Cooling System (감압냉각장치를 이용한 다이캐스팅 금형의 냉각성능평가)

  • Kim, Eok-Soo;Park, Joo-Yul;Kim, Yong-Hyun;Son, Gi-Man;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.238-243
    • /
    • 2009
  • This study has been carried out to investigate the cooling ability improvement of diecasting mold by decompression cooling system. The decompression cooling system was applied to the new/used oil pump cover molds. The temperature of the surface mold applied the decompression cooling system fell to 15 degrees, especially in case of the used mold. The defect ratio of the oil pump cover manufactured by decompression cooling system has decreased from 2.8 percent to 0.2 percent. According to the results of the cooling ability improvement of diecasting mold by decompression cooling system, the decompression degree and supply pressure were set up the control item to apply the decompression cooling system to the diecasting mold in the industry field.

Case Study for Casting Design of Automobile Part(Gear Box) Using CAE (CAE를 이용한 자동차용 부품(Gear Box)의 주조방안 설계에 대한 사례연구)

  • Kwon, Hongkyu;Jang, Moo-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.179-185
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (Z Cast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production die casting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.

Study on the Cooling Effect of Motor Integrated Spindle (모터내장형 주축의 냉각특성에 관한 연구)

  • Song, Young-Chan;Lee, Deug-Woo;Choi, Dae-Bong;Kim, Soo-Tae
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.8-13
    • /
    • 1997
  • Generally, A motor integrated spindle is selected to perform the high speed machining, to improve the machining flexibility, and to simplify the structure of machine tools. The thermal deformation caused by heat generation of the integrated motor is, however, serious problem in motor integrated spindle system. In this study, cooling characteristics for the several kinds of cooling systems(such as, oil-jacket cooling, air cooling) are investigated and more efficient cooling method is presented. The results show that the shaft cooling by the air cooling system is effective to improve the thermal characteristic of motor integrated spindle.

Case Study for Developing Automobile Part (Steering Wheel) using Vacuum Die-Casting Mold (진공다이캐스팅 공법을 이용한 자동차용 조향장치 개발에 대한 사례연구)

  • Kwon, Hong-Kyu;Jang, Moo-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.196-203
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation between injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects were differentiated according to the various relations of the above conditions. High-qualified products can be manufactured as those defects are controled by the proper modifications or the changes of die casting mold with the conditions. In this research, the proper manufacturing method was derived intensively for reducing the defect of the internal porosity of steering wheel housing which is very complicated to achieve a good mold design. The method was also derived for minimizing and for guaranteeing the product quality through the analysis of the casting problem and the deduction of alternative plans.

High Performance Gear Obtained by Die Warm Compaction and Rapid Cooling Process

  • Calero, J.A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.199-200
    • /
    • 2006
  • PM recent developments focus on increasing this technology's competitiveness when compared to wrought materials. Warm compaction allows the replacement of a double press double sinter process with a single warm press and sintering step, thus allowing cost and time savings. Moreover there are added benefits to consider such as reducing work in process and lessening part's logistics cost. This paper presents a successful industrial trial to replace a double press-double sinter process with a warm die compaction and sintering process. The part chosen was a high performance gear containing 0,9% wt. carbon. Sintering was conducted in a belt furnace at $1120^{\circ}C$ in a nitrogen rich atmosphere with rapid cooling process in order to obtain a quasi fully martensitic structure with a minimum of 700HV0,1 and 450HV10 after annealing. The balance between properties and cost is favoured by the use of a singular lubricant developed in a Eureka frame project together with POMETON S.A. and die warm compaction. Warm compaction is only needed to be effective on the gear teeth, in order to achieve the required properties. Therefore only the die is actually heated. This simplified system avoids flow rate problems typically involved when using more elaborate warm compaction equipments.

  • PDF

Die Casting Process Design for Front Housing of Aircon Compressor by Using MAGMAsoft (MAGMAsoft를 이용한 Aircon Compressor Front Housing의 다이캐스팅 주조공정설계)

  • 공성락;박진영;김억수;문영훈
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.413-420
    • /
    • 2000
  • In the die casting process, the flow of liquid metal has significant influence on the quality of casting products and die life. For the optimal process design of front housing part of aircon compressor, various analyses were performed in this study by using computer simulation code, MAGMAsoft. The simulation has been focused on the molten metal behaviors during the filling and solidification stages for the sound casting products. Two cases of casting design that have different types of gating system are considered in the analysis. The potential sites where the casting defects may occur is examined by computer simulation and an improved design process is proposed. Also the effect of partial squeeze on the quality of casting products is considered and the optimal time lag after filling process is determined. For the die-stability, the effect of operational parameters such as die temperature, heat cycle and spot cooling on the die life has also been analyzed.

  • PDF