• Title/Summary/Keyword: Die Cavity

Search Result 210, Processing Time 0.031 seconds

Fabrication Process of Aluminum Bipolar Plate for Fuel Cell using Vacuum Die Casting (진공 다이캐스팅 공법을 이용한 연료전지용 알루미늄 분리판의 제조 공정)

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • This study aims to investigate the formability of bipolar plates for fuel cell fabricated by vacuum die casting of ALDC 6. Cavity shape of mold is thin walled plate (size: $200mm{\times}200mm{\times}0.8mm$) with a serpentine channel (active area: $50mm{\times}50mm$). Before bipolar plate was made by HPDC, computational filling behavior and solidification was performed by MAGMA soft. The final mold design for location and direction of channel was determined by computational simulation. Also, according to injection speed conditions, simulation result was compared to actual die casting experimental result. When vacuum pressure, injection speed of low and high region is 350 mbar, 0.3 m/s and 2.5 m/s respectively, products had few casting defects. On the other hand, at the same as injection speed, without vacuum pressure, products had many casting defects between end of the channel and overflow.

Robust Design of Shot Sleeve Wall Thickness for a Horizontal Pressure Die Casting Machine (수평형 고압다이캐스팅용 샷슬리브의 강건설계)

  • Park, Y.K.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • As a shot sleeve in die casting plays a critical role in delivering molten metal to a die cavity, any disruption to its function in the injection stage results in deterioration of the quality of final castings. To guarantee a smooth operation of a shot sleeve, its structural stability should be maintained. Despite the simple geometry, design of shot sleeve is based on individual engineer's experience and no agreement on the design is present. In this study, we newly propose a systematic methodology to determine a minimum wall thickness of a shot sleeve to prevent yielding or plastic deformation. Analytical calculations incorporating numerical analysis produce a rational design rule for minimum thickness of a shot sleeve subject to metal intensification pressure and geometric die constraint. To validate the proposed design guideline, authors present real data on a collection of actual shot sleeves. Upon checking their conformity to the new design rule, we discovered a strong correlation between the design of wall thickness and premature failures.

  • PDF

Design of Shock Absorber Housing Using Aluminum Vacuum Die Casting Technology

  • Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to develop a high-strength, high-toughness, thin-walled aluminum shock absorber housing product by applying a high vacuum die casting method to improve internal gas defect and formability. The analysis program dedicated for the casting was used because it was too costly and time-consuming to adopt the gating system design. The final casting plan was designed based on the flow pattern of the material filled into the mold and the result of air pressure and air pocket after the material was completely filled in the mold. Gaty shape was designed as a split type. The runner was designed to have the same shape as the initial inlet curve of the cavity, and the flow of the molten metal was prevented from turbulent flow. The most favorable results were obtained when the injection speed was $V_2=4.0m/s$. Defects on pores were reduced by applying high vacuum level inside the mold.

The Effect of Gate Shape for Semi-Solid Forging Die on the Filling Limitation (반용융 단조금형의 Gate 형상이 성형성에 미치는 영향)

  • Son Y. I.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.178-184
    • /
    • 2000
  • To obtain high quality component with thixoforming process, it is important that the homegeneous distribution of solid particles without liquid segregation. In closed-die semi-solid forging process, liquid segregation is strongly affected by injection velocity than any other process variables because the material has to travel relatively long distance to fill the cavity through a narrow gate before solidification begins. The optimal injection velocity and die temperature were investigated to fabricate near-net-shape compressor component called Al frame.

  • PDF

Characteristics of Machining corners in 3-D Micro EDM (3-D 미세 방전 가공의 모서리 형상 가공 특성)

  • 김기현;김보현;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.922-925
    • /
    • 2000
  • As mechanical components require size minimization and high precision, micro die machining technology has been developed in many fields. to machine a micro die by EDM, sometimes, a polygonal electrode is use. Machining corners by MEDM shows special characteristics. Physically, electrons are concentrated in sharp region and a high potential level is established in this region. Also, the electrode can't be rotated when machining a polygonal cavity, and machined debris can not drawn off easily. Discharge concentration in corners and 2nd discharge by machined debris result in distortion of corner shape. This phenomena can be improved by shaking the electrode. This method is also shown to be effective in improving surface roughness by circulation of machining fluid resulting from movement of the electrode.

  • PDF

A study on tube bending for hydoforming (Hydroforming을 위한 Tube benidng에 관한 연구)

  • 이한남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.35-38
    • /
    • 1999
  • Tube bending is an important factor of the hydroforming processes. The tube must be bent to the approximate centerline of the finished part prior to hydroforming to enable the tube to be placed in the die cavity. This paper presents the simulation results in prebending process by a rotary bending machne and a bend die that is used to form an automotive part a tie bar, Prebending simulation is carried out to obtain the shape change of cross section and thinning in bending process. To avoid occurring wrinkle in compressive zone during bending process a wiper die included,. A parametric study is carried out to obtain the effect of the forming parameters such as a bend radius and tube thickness

  • PDF

Extru-Bending Process of Curved Product with Flanged Section by Asymmetric Shape of an Extrusion Billet (압출빌렛의 비대칭 형상에 의한 플랜지단면을 가지는 곡봉의 압출굽힘 가공)

  • Park D. Y.;Yun S. H.;Park J. W.;Jin I. T.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.139-144
    • /
    • 2005
  • It was investigated that curved aluminum products with 'ㄷ' section or with 'h' section could be bended during extrusion by the extru-bending process. In order to make bending at the exit section of die, the flow of billet inside die cavity was controlled by the shape of billet. As results of the analysis of $DEFORM^{™}-3D$, it was known that the bending phenomenon at the die exit can be happened by the asymmetric section of billet. And it was known by the experiment with plasticine or aluminum material that an symmetric product with 'c' channel section and the product with flanged 'h' section could be bended because of asymmetric shape of billet.

An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel (6061 알루미늄합금 휠 단조공정의 해석)

  • 김영훈;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

A Study on the Wall Thickness Design for Injection Molding (사출 금형의 벽두께 설계 방법의 고찰)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.149-153
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

An Experimental Study on the Manufacturing Technology of an Engine Piston (자동차용피스톤의 제조기술에 관한 실험적 연구)

  • 김영호;배원병;김형식;변홍석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.83-92
    • /
    • 1998
  • In this paper, an experimental study has been carried out to develop an aluminum forged piston which has good mechanical properties. Through the experiment, the cavity filling, microstructure and mechanical properties of the final product are investigated with respect to chosen process parameters, which are die shape, heat-treatment condition and preform shape. The mechanical properties of the forged piston are compared with these of the cast piston. As the results, an appropriate die-shape is obtained to produce a perfect piston. The suitable heat-treatment condition and preform-shape are found to good hardness and minute microstructure in the forged piston. And we could obtain the mechanical properties(tensile strength, elongation and hardness) of the forged piston are superior to these of the cast piston.

  • PDF