• Title/Summary/Keyword: Diatoxanthin

Search Result 16, Processing Time 0.02 seconds

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Variation in Cartenoid Pigment and lipids of the Arkshell, (Anadara broughtonii) according to the Environmental Factors of the Growing Area (서식환경요인에 따른 피조개육의 Carotenoid색소와 지질성분의 변화)

  • Ha, Bong-Senk;Kang, Dong-Soo;Kim, Yung-Gwan;Kim, Kui-Shik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.1
    • /
    • pp.71-92
    • /
    • 1989
  • The seasonal variations of environmental sea water, arid carotenoid and lipid composition of reddish muscle tissue of arkshell, Anadara broughtonii in Chungmu and $Y{\check{o}}su-area$ were investigated. In the sea water, pH value, salinity, electrical conductivity of Chungmu and $Y{\check{o}}su-area$ were similar tendency, but water temperature in annual average at Chungmu-area was about $2^{\circ}C$ higher than that of $Y{\check{o}}su-area$. The concentration of nitrite-nitrogen, ammonia-nitrogen, phosphate-phosphours at Chungmu-area were slightly higher than those at $Y{\check{o}}su-area$. Meanwhile the concentration of silicate-silicious at $Y{\check{o}}su-area$ was about 2 times higher than that of Chungmu-area. The bacterial density of the sea water was ranged from 3.6 to 93/100ml for coliform and 3.0 to 15/100ml for fecal colifrom at Chungmu-area, but the coliform was ranged 7.3 to 150/100ml and the fecal coliform was ranged 3.6 to 20/100ml at $Y{\check{o}}su-area$. Among the coliform, 8.9% Escherichia coli, 33.9% Citrobacter freundii, 41.1% Enterobacter aerogenes groups were classified and 16.1% was not identified. In the hemoglobin content of reddish muscle tissue of arkshell, one from Chungmu-area was ranged from 1.1 to 2.5 g /dl and one from $Y{\check{o}}su-area$ was ranged from 1.7 to 4.4 g /dl. In total carotenoid content, 0.80 to 1.28mg/100 g muscle was in Chungmu-area and 0.45 to 0.99mg/100 g muscle was in $Y{\check{o}}su-area$. Among the carotenoid compositions, pectenolone content was 63.0% in annual average from Chungmu area and 59.6% from $Y{\check{o}}su-area$, 6.5% from Chungmu area and 18.9% from $Y{\check{o}}su-area$ in ${\beta}-carotene$, 9.9% from Chungmu-area and 9.1% from Yosu-area in pectenoxanthin, 11.2% from Chungmu-area and 5.2% from $Y{\check{o}}su-area$ in diatoxanthin monoester were observed. In the seasonal variation for the major carotenoids, the content of pectenolone was continuously incresedbefore spawning period and showed the maximum in July, but decresed after spawning period. Diatoxanthin monoester was gradually incresed during all growing period from March to next January. And ${\beta}-carotene$ was decresed before spawning period and showed the maximum in July but incresed after spawning period. The major fatty acids of total lipid and fractionated lipid classes from total lipid namely neutral-, glyco- and phospholipid were $C_{16:0},\;C_{18:1},\;C_{22:6},\;C_{20:2},\;C_{18:2},\;C_{20:5}\;and\;C_{18:3}$ acid in the muscle tissue of arkshell. The content of neutral lipid showed about 2 times higher than polar lipid in the muscle tissue of arkshell from both Chungmu and, $Y{\check{o}}su-area$. The content of total and neutral lipid was decresed during spawning period. In the seasonal variation for fatty acid compositions, the content of polyenenoic acid in total and neutral lipid was decresed and saturated acid was incresed. On contrary, polyenoic acid in glyco and phospholipid was incresed and saturated acid was decresed during spawning period from July to September. The sterol composition in total lipid were mainly consisted of cholesterol, campesterol, brassicasterol and ${\beta}-sitosterol$. Especially, the rate of content in cholesterol showed decrese during spawning period butcampesterol showed increse from March to November.

  • PDF

Comparative Study on Microphytobenthic Pigments and Total Microbial Biomass by ATP in Intertidal Sediments (조간대 퇴적 환경에 따른 저서미세조류 색소와 총 아데노신 3인산(ATP: Adenosine-5' triphosphate) 비교 연구)

  • Ha, Sun-Yong;Choi, Bo-Hyung;Min, Jun-Oh;Jeon, Su-A;Shin, Kyung-Hoon
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Biomass and community composition of microphytobentos in tidal flats were studied by HPLC analysis and also investigated to examine the relationship between microphytobenthic pigments and Adenosine-5' triphosphate (ATP) as an index of total microbial biomass in intertidal environments (muddy and sandy sediment) of Gyeonggi Bay, west coast of Korea. Microphytobenthic pigments and ATP concentration in muddy sediment were the highest at the surface while the biomass of microphytobenthos in sandy sediment was the highest at the sub-surface (0.75 cm sediment depth). The detected pigments of microphytobenthos were chlorophyll a, b (euglenophytes), $c_3$, peridinin (dinoflagellates), fucoxanthin (diatom or chrysophytes), diadinoxanthin, alloxanthin (cryptophytes), diatoxanthin, zeaxanthin (cyanobacteria), ${\beta}$-carotein, and pheophytin a (the degraded product of chlorophyll a). Among the pigments which were detected, the concentration of fucoxanthin was the highest, indicating that diatoms dominated in the microphytobenthic community of the tidal flats. There was little significant correlation between OC (Organic Carbon) and ATP in both sediments. However, a positive correlation between chlorophyll a concentration and ATP concentration was found in sandy sediment, suggesting that microbial biomass could be affected by labile OC derived from microphytobenthos. These results provide information that may help us understand the relationship between microphytobenthos and microbial biomass in different intertidal sediment environments.

HPLC Analysis of Biomass and Community Composition of Microphytobenthos in the Saemankeum Tidal flat, West Coast of Korea (한국 서해 새만금 갯벌에서 저서미세조류의 생체량과 군집조성에 대한 HPLC 분석)

  • OH Seung-Jin;MOON Chang-Ho;PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.215-225
    • /
    • 2004
  • Biomass and community composition of microphytobenthos in the Saemankeum tidal flat were studied by HPLC analysis of the photosynthetic pigments from November 2001 to November 2002. The environmental factors of sediment were also investigated to examine the relationship between microphytobenthos biomass and sedimentary environments. The detected photosynthetic pigments of microphytobenthos were chlorophyll a, b, c, fucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, diadinoxanthin, alloxanthin, diatoxanthin, zeaxanthin+lutein, peridinin and beta-carotene. Pheophytin a, the degradation product of chlorophyll a, was also detected. The results of pigmen analysis suggest the presence of diatom (fucoxanthin), euglenophytes (chlorophyll b), chlorophytes (chlorophyll b + lutein), cyanobacteria (zeaxanthin), cryptophytes (alloxanthin), chrysophytes (fucoxanthin + violaxanthin), prymnesiophytes (19'-hexanoyloxyfucoxanthin) and dinoflagellates (peridinin). Chlorophyll a concentration in the top 0.5 cm of sediment was in the range of $0.24\;mg{\cdot}m\^{-2}\;-32.11\;mg{\cdot}m\^{-2}$ in the study area. The increase of chlorophyll a concentration in the spring indicates the occurrence of a microphytobenthic bloom. In the summer, there was a sharp decrease of the chlorophyll a concentration which was probably due to high grazing activity by macrobenthos. The annual mean chlorophyll a concentration in the study area was low compared to that in most of other tidal flat areas probably due to active resuspension of microphytobenthos and high grazing activity by macrobenthos. There was no clear relationship between microphytobenthos biomass and sedimentary environments because of a large variety of physical, chemical and biological factors, Pigment analysis indicated that while diatoms were dominated in the microphytobenthic community of the Geojon tidal flat, euglenophytes and/or chlorophytes coexisted with diatoms in the Mangyung River tidal flat.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

Carotenoids Components of Tunicata, Shellfishes and Its Inhibitory Effects on Mutagenicity and Growth of Tumor Cell (미색동물 및 패류의 Carotenoids 색소성분과 돌연변이 및 종양세포 증식의 억제효과)

  • 하봉석;백승한;김수영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.922-934
    • /
    • 2000
  • To investigate the composition of carotenoids present in marine organisms and the biological activity of the carotenoids, carotenoids of the muscles and tunic of tunicates and shellfishes were isolated and identified. Anitmutagenic activities of the carotenoids for S. typhimurium TA 98 and cytotoxic activity for cancer cell lines were determined. Total carotenoid contents in the muscle of tunicata ranged from 18.65 mg% to 2.39 mg%. The highest amount of the total carotenoid was found in the muscle of Halocynthia aurantium, followed by Styela clava (HERDMAN), H. roretzi, H. hilgendorfi f. igaboya, H. hilgendorfi f. retteri, S. plicata (LESUEUR) in order. Interestingly, total carotenoid content in the muscle of S. clava (HERDAMAN) was higher than that of H. roretzi. Total carotenoid content of all tunicata, other than H. aurantium and H. roretzi, were higher in muscle than tunic. The major carotenoids in H. roretzi, H. aurantium, S. plicata (LESUEUR), and S. clava (HERDAMAN) were cynthiaxanthin (25.1∼42.2%), halocynthiaxanthin (9.7∼26.3%), diatoxanthin (8.0∼18.7%) and β-carotene (7.7%∼21.7%). Similarly, cantaxanthin (19.6%), cynthiaxanthin (15.4%), halocynthiaxanthin (14.8%), and (3R, 3'R), (3S, 3'S)-astaxanthin (22.6%) in H. hilgendorfi f. retteri and fucoxanthin (26.6%), cynthiaxanthin (21.8%), halocynthiaxanthin (15.2%), and β-carotene (9.3%) in H. hilgendorfi f. igaboya were major carotenoids in both tunicate. However, the composition of carotenoids in muscle and tunic of tunicata was similar each other. Among the shellfishes examined, total carotenoid content of the muscle of Peronidia venulosa (Schrenck) and Corbicula fluminea, and of the gonad of Atrina pinnata and Chlamys farreri, was ranged from 2.51 to 6.83 mg% which were relatively higher than that of other shellfishes. The composition of the carotenoids of shellfishes, which might depend upon their living environments, was varied. But cynthiaxanthin (15.9∼39.0%) and zeaxanthin (9.6∼21.9%) in gonad of C. farreri, and muscles of Buccinum Volutharpa perryi (JAY) and Crassostrea gigas, cynthiaxanthin (21.5∼48.6%) and mytiloxanthin (14.6%) in muscle of C.fluminea and gonad of A. pinnata, and canthaxanthin (60.6%) and isozeaxanthin (20.5%) in muscles of P. venulosa (Schrenck), and β-carotene (23.7%∼37.8%) and zeaxanthin (18.2∼20.4) in muscles of Semisulcospira libertina and Meretrix lusoria were major carotenoids. Interestingly, diester type-carotenoids were present along with free type-carotenoids in muscles of C. gigas. antimutagenic effect of the carotenoids isolated from tunicata and shellfishes against 2-amino-3-methylimidazol [4,5-f]quinoline (IQ) for S. typhimurium TA 98 was proportional to the amount (20, 50 and 100㎍/plate) treated. Mutagenicity of IQ was significantly reduced by astaxanthin, isozeaxanthin, mytiloxanthin and halocynthiaxanthin, whereas the mutagenicity of aflatoxin B₁(AFB₁) was significantly reduced by β-carotene, isozeaxanthin, and mytiloxnthin. Growth inhibition effect of carotenoids isolated from tunicata and shellfishes for cancer cell was proportional to the amount (5, 10, and 20㎍/plate) treated. The growth of HeLa cell by β-carotene, cynthiaxanthin, astaxanthin and halocynthiaxanthin, NCI-H87 cell by β-carotene, astaxanthin, cynthiaxanthin, and halocynthiaxanthin, HT-29 cell by β-carotene, cynthiaxanthin, mytiloxanthin and halocynthiaxanthin, and MG-63 cells by β-carotene, cynthiaxanthin, astaxanthin, canthaxanthin and halocynthiaxanthin were statistically reduced.

  • PDF