• Title/Summary/Keyword: Diaphragm Forming Unit

Search Result 3, Processing Time 0.022 seconds

Domestic Development of Vibrational Film Forming Machine and Die and Mold in the High Speed Production(I) - Single production forming machine - (고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(I) - 단수 생산 진동판 성형기 -)

  • Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • Vibrational film has been more employed in ear-phones or small type of speakers along with a wide use of portable multi-media equipments such as MP3 and MP4. However, the current hand work production process of diaphragms is inefficient. In this study, a die-and-mold and a single production forming machine are developed, and they result in a multi-production forming machine. The multi-production forming machine consists primarily of a film feeding unit and an unwinding unit. A vacuum suction device provides the film feeding unit, while the unwinding unit is obtained using an appropriate damper. The advantage of the developed single production forming machine is shown according to a proper voice test.

A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor (수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구)

  • Y. G. Kim;H. J. Park;K. E. Kim;M. P. Hong;G. P. Kang;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

Analysis of Hydrostatic Bulging of a Rectangular Diaphragm by Using the Energy Method (에너지법에 의한 직사각형 격막의 정수압벌징 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.684-695
    • /
    • 1992
  • The present study is concerned with the analysis of three-dimensional sheet metal forming process by the upper-bound method. For the analysis a systematic approach is necessary for the expression of geometric configuration of the deforming workpiece. In the present paper geometric configuration is constructed by three unit surfaces which are defined by sweeping the vertical section curves and boundary curve. The principal components of strain increment during the process is calculated directly from the change of geometric configuration for an arbitrary triangular element. The corresponding solution is found through optimization of the total energy consumption with respect to some parameters assumed in the velocity field and geometric profile. In order to verify the effectiveness of the present method, hydrostatic bulging of a rectangular disphragm is analyzed and the computation by the present method for the geometric shape renders the good result. From the comparison of the present results with the existing experimental results and elastic-plastic finite element solutions, good agreements have been obtained for the pressure curves, polar membrane strains and pressure distributions. The present method can thus be further applied to the analysis of other three-dimensional sheet metal forming processes.