• Title/Summary/Keyword: Diaphragm

Search Result 1,170, Processing Time 0.033 seconds

The Effects of Breathing Retraining on Asymmetry of Diaphragm Thickness in Stroke Patients (호흡훈련이 뇌졸중 환자의 횡격막 비대칭에 미치는 영향)

  • Kim, Nan-Soo;Jung, Ju-Hyeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 2013
  • PURPOSE: The purpose of this study was to examine the effects of breathing retraining on asymmetry of diaphragm thickness in stroke patients. METHODS: This study was nonequivalent control group pre-post test design. Subjects were assigned to two different groups(intervention group=10, control group=12). Intervention group conducted breathing retraining program for six-week. Diaphragm thickness was assessed by ultrasound in B-mode with a 7.5 MHz linea probe. The collected data analyzed by Wilcoxon signed rank test and Mann-Whitney U test. RESULTS: The intervention group significantly increased diaphragm thickness ratio on paretic side but the control group showed no significant difference in diaphragm thickness ratio. The control group significantly increased asymmetry of diaphragm thickness, but intervention group showed no significant difference in asymmetry of diaphragm thickness. CONCLUSION: This study showed that breathing retraining increased diaphragm thickness ratio in stroke patients and prevent the increase of asymmetry in diaphragm thickness with stroke patients.

CFT seismic reinforcement method using double diaphragm (2중 다이어프램을 이용한 CFT내진보강공법)

  • Woo, Jong-Yeol;Shin, Seung-Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.153-154
    • /
    • 2022
  • When reinforcing an existing building with the Concrete Filled Tube(CFT) structure, it is impossible to form a diaphragm inside with the existing method. Therefore, in this study, a construction method was proposed so that the force could be transmitted using the friction force between the diaphragm and the concrete using a double diaphragm.

  • PDF

Vibration Analysis of Micro Speaker Diaphragm (마이크로 스피커 다이어프램의 진동해석)

  • Hong, D.K.;Woo, B.C.;Ahn, C.W.;Han, G.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

A Study on the Acoustical Properties of Micro-speaker according to Comb Teeth Shape of the Diaphragm (진동판의 빗살주름무늬 형상에 따른 마이크로스피커의 음향특성에 관한 연구)

  • Lee, Tae-Keun;Kim, Byoung-Sam;Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-131
    • /
    • 2008
  • There are many factors which affect the acoustical properties of a micro-speaker. Among the factors, the shape of the diaphragm is considered in this study. As an investigating method, the finite element methods and measurement techniques applied to study the acoustical properties according to diaphragm shape. In order to vary the stiffness of the diaphragm, the some patterns of comb teeth, such as the angle and the number of comb teeth, are applied to diaphragm. We can confirm that the change of the stiffness by the changing diaphragm shape affects the vibration and sound properties of the speaker. As a result, the reduction of the angle of the comb teeth increases the diaphragm stiffness and shifts the resonance frequency to a higher frequency range. The number of the comb teeth is related to the stiffness of the edge part.

Axial Stiffness Analysis of a Clutch Diaphragm Spring in Passenger Cars (승용차용 클러치 다이아프램 스프링의 축방향 강성해석)

  • Kim, J.Y.;Kim, J.G.;Yoon, H.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.35-40
    • /
    • 2010
  • This article deals with the numerical analysis results of stiffness of diaphragm spring used in the clutch of a manual transmission. In order to investigate the relationship of the force and displacement in a diaphragm spring, we have established a numerical model of diaphragm spring using a well-known analytic model of Belleville spring and a cantilever beam model for the finger part of diaphragm spring. Using the stress and strain relations of Belleville spring and cantilever beam, we propose the analytic equation of motion of diaphragm spring for the use of a clutch automated actuator in an automated manual transmission. The proposed analytic model represents the typical dynamic characteristics of diaphragm spring along with the release bearing travel. And it is characterized in a closed-form equation, therefore it can be used for the further study of development of actuator and control law of clutch automating mechanism.

An Experimental Study on Behavior of Box Girder considering Middle Diaphragm Shapes (중간격벽의 형상을 고려한 상자형 거동에 대한 실험적 연구)

  • 정희효;이승열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.501-510
    • /
    • 2002
  • The middle diaphragm of box girder is to prevent the deformation of the cross section of box girder, to distribute load produced at upper flange onto the both sides of web. But if inner space of box girder is barred by the middle diaphragm, it is impossible to use in inner space of box girder and it is felt constraint on maintenance-management. The effect of middle diaphragm of box girder is intended to be expressed by the stiffness of diaphragm in comparing the diaphragm with opening of box girder with diaphragm without opening of box girder through the experiment.

The Effect of Curvature Radius and Material of Diaphragm on the Valve Opening Time in Diaphragm Type S/R Valve (S/R 밸브에서 격막의 곡률반경과 재료가 밸브 개구시간에 미치는 영향)

  • Cheon, Heung-Kyun;Hwang, Jae-Gun;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2961-2966
    • /
    • 2007
  • When the pressure at the weak spot established at a certain part of a high pressure vessel or piping system exceeds a design pressure, this weak spot is burst, and the pressurized gas emitted through the weak spot will cause a compression wave system. In this connection, in the present study, an experimental study by using a conventional shock tube facility is performed to estimate the effects of the material of diaphragm, curvature radius and thickness of materials on the valve opening time in diaphragm. Pressure sensor having 500kHz in natural frequency is installed at 35mm downstream of the rupture diaphragm to measure the static pressure history of propagating and being accumulated compression wave. 4 kinds of materials are used as diaphragm that is aluminium, copper, stainless steel and zinc. The diaphragm radii of curvature R are ${\infty}$, 120mm and 60, respectively. And the depth for $90^{\circ}$ groove is 0.04mm. It is found that the smaller the tensile strength and elongation of the rupture diaphragm is, the smaller the radius of curvature of the rupture diaphragm is, and for the same conditions the thinner the thickness of the rupture diaphragm is, the shorter the valve opening time becomes. Also, the tensile strength, elongation and the radius of curvature of the rupture diaphragm for the same conditions are smaller, the maximum pressure rise caused by the coalescences of the compression wave is smaller. Finally the pressure ratio is higher, the valve opening time is shortened and gradient of pressure increment is more steepen.

  • PDF

Seismic response of torsional structures considering the possibility of diaphragm flexibility

  • Eivani, Hamed;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.463-472
    • /
    • 2021
  • Fully rigid floor diaphragm is one of the main assumptions that are widely used in common practices due to its simple application. However, determining the exact degree of diaphragms flexibility cannot be easily accomplished without finite element modeling, which is an expensive and time-consuming procedure. Therefore, it is always possible that apparently rigid diaphragms, based on prescriptive limitations of seismic codes, experience some degrees of flexibility during the earthquakes. Since diaphragm flexibility has more uncertainties in asymmetric-plan structures, this study focuses on errors resulting from probable floor diaphragm flexibility of torsionally restrained structures. The analytical models used in this study were single-story buildings with asymmetric plan and RC shear walls. Although floor system is not considered explicitly, a wide range of considered diaphragm flexibility, from fully rigid to quite flexible, allows the results to be generalizable to a lot of lateral load resisting systems as well as floor systems. It has been shown that in addition to previously known effects of diaphragm flexibility, presence of orthogonal side elements during design procedure with rigid diaphragm assumption and rapid reduction in their absorbed forces can also be an important source to increase errors due to flexibility. Accordingly, from the obtained results the authors suggest designers to consider the possibility of diaphragm flexibility and its adverse effects, especially in torsionally restrained systems in their common designs.

Diaphragm Design Method of Steel Box Beam and Circular Column Connections (강재 원형기둥-상자형보 접합부의 다이아프램 설계법)

  • Kim, Young Pil;Hwang, Won Sup;Park, Moon Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.123-135
    • /
    • 2006
  • This paper investigates the design equations and the strength behavior of the diaphragm for steel box beams and circular-column connections. The strength of the connection is decided by the strength of the diaphragm and the strength of the beam and the column, because the connection diaphragm supports the concentration forces from the box beam's lower flange. In previous researches, however, the calculation procedure of the diaphragm stress from the indeterminate curved-beam model is to complicated to apply in process of the equation. Moreover, no reasonable design has yet ben made because the diaphragm's effect on the strength of the connection has not ben considered. Therefore, through nonlinear FEM analysis of the connection diaphragm, this study examines the strength behavior of a connection with diaphragm details. In addition, a great difference is confirmed between the theoretical and analytic behaviors. Fi naly, considering the strength of the connection and the rigidity capacity of the diaphragm, the diaphragm design method is proposed.

Structural response of a three-story precast concrete structure subjected to local diaphragm failures in a shake table test

  • Ilyas Aidyngaliyev;Dichuan Zhang;Robert Fleischman;Chang-Seon Shon;Jong Kim
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.195-204
    • /
    • 2024
  • Floor inertial forces are transferred to lateral force resisting systems through a diaphragm action during earthquakes. The diaphragm action requires floor slabs to carry in-plane forces. In precast concrete diaphragms, these forces must be carried across the joints between precast floor units as they represent planes of weakness. Therefore, diaphragm reinforcement with sufficient strength and deformability is necessary to ensure the diaphragm action for the floor inertial force transfer. In a shake table test for a three-story precast concrete structure, an unexpected local failure in the diaphragm flexural reinforcement occurred. This failure caused loss of the diaphragm action but did not trigger collapse of the structure due to a possible alternative path for the floor inertial force transfer. This paper investigates this failure event and its impact on structural seismic responses based on the shake table test and simulation results. The simulations were conducted on a structural model with discrete diaphragm elements. The structural model was also validated from the test results. The investigation indicates that additional floor inertial force will be transferred into the gravity columns after loss of the diaphragm action which can further result in the increase of seismic demands in the gravity column and diaphragms in adjacent floors.