• 제목/요약/키워드: Diamond wheel

검색결과 167건 처리시간 0.019초

반사체 회전금형 초경로울러의 개발에 관한 연구(제1보) -반사체 형상 해석 및 다이 아몬드 예각지석 시스템 설계- (Study on the Development of Sintered Carbide Roller Mold for Reflector(1st) -Analysis of Reflector Geometry and Design of Acute Angle Diamond Wheel System-)

  • 김정두
    • 한국생산제조학회지
    • /
    • 제5권2호
    • /
    • pp.73-82
    • /
    • 1996
  • A simtered carbide roller mold for reflector which is used for coverof automobile lamp and beacon plate of highway has been developed. The geometry of sintered carbide roller mold has been determined from the analysis of reflector geometry. An acute angle diamond wheel and dressing system also has been designed and developed to manufacture the sintered carbide roller mold.

  • PDF

페리이트의 총형 연삭에서 전착 다이아몬드 연삭숫돌의 최적 연삭조건 (Optimum Grinding Condition for Electroplated Diamond Wheel in Form Grinding of Ferrite)

  • 김성청;이재우;김관우;한상욱;황선희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.29-33
    • /
    • 1996
  • This paper aims to clatify the potimum grinding condition for the electroplated diamond wheel in form grinding of Sr-ferrite. The main conclusions obtained were as follows. (1) The flexural strength and surface roughness of ferrite became the highest at the peripheral wheel speed of 1700m/min. (2) In the case of depth of cut larger than 0.4mm, crack layers is induced in the ground surface, the fracture type of chips exhibits slight ductile mode in the depth of cut smaller than 0.2mm. (3) When the depth of cut exceed 0.6mm, the tool life becomes extermely short due to large chipping and brackage. However, at the depth of cut .geq. 0.05mm, the diamond grain shows abrasive wear. (4) The flexural strength and surface roughness increases in proportion to the feed rate.

  • PDF

반사체 회전금형 초경로울러의 개발에 관한 연구(제1보) -반사체 형상 해석 및 다이 아몬드 예각지석 시스템 설계- (Study on the Development of Sintered Carbide Roller Mold for Reflector -Analysis of Reflector Geometry and Design of Acute Angle Diamond Wheel System)

  • 김동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.170-176
    • /
    • 1996
  • A Sintered carbide roller mold for reflectors which is used for cover of automobile lamp and beacon plate of highway has been developed. The geometry of sintered carbide roller mold has been determined from the analysis of reflector geometry. An acute angle diamond wheel and dressing system also has been designed and developed to manufacture the sintered carbide roller mold.

  • PDF

연속 전해드레싱을 적용한 세라믹재의 초정밀 래핑에 관한 연구 (A Study on Ultra-precision Lapping of Ceramics with In-Process Electrolytic Dressing)

  • 이은상
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.34-39
    • /
    • 2000
  • Application of ceramics has grown considerably due to significant improvement in their mechanical properties such as light weight, chemical stability and superior wear resistance. Despite these character, the use of ceramics has not increased because of poor machinability. The method of using of super-abrasives metal bond wheel was proposed. But it is difficult that super-abrasives metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. If this method is applied, loading and glazing are disappeared apparently. The aim of this study is to determine the machining characteristics in terms of lapping wheel speed, machining time, pressurized weight to the workpiece and peak current using in-process electrolytic dressing applied to the CIB-diamond lapping wheel to achieve ultra-precision lapping machining technique.

  • PDF

페라이트의 연삭성에 관한 연구 (Study on grindability of ferrite)

  • 김성청;이재우
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1507-1519
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on bending strength in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows. At a constant material removal rate, the strength improves with increased wheel depth of cut and decreased workpiece speed. It is desirable to grind at higher peripheral wheel speed and under the critical workpiece speed presented in this paper. Grinding the ferrite of higher brittleness, the wheel depth of cut limited to hold 50% of their inherent strength becomes lower. The effect of various grinding conditions on bending strength becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn. When using the diamond grain of the lower toughness, the bending strength becomes higher, and the wheel wear occurs faster. Considering both bending strength and wheel wear rate, the best concentration of wheel is 100. The ground surfaces exhibit that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn.

임플란트 시술용 지르코니아 소재의 연삭가공 성능 평가에 관한 연구 (A Study on the Grinding Characteristics of Surgical Implant Zirconia)

  • 이상민;채승수;이충석;김택수;이재건;이종찬
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.72-77
    • /
    • 2014
  • 3.2YSZ melted by the 'skull melting' method has good physical properties and does not undergo low-temperature degradation. Due to its excellent physical and mechanical properties, skull-melted 3.2YSZ has been developed as a dental implant material. In this study, a porous, resin-bonded diamond wheel was created and its grinding characteristics were compared with those of traditional nonporous wheels using skull-melted 3.2YSZ. The experimental results indicate that the porous, resin-bonded diamond wheel requires less grinding force and power. In addition, the porous, resin-bonded diamond wheel requires a greater degree of roughness.

페라이트의 연삭저항 및 연삭면 특성 (Study on Grinding Force and Ground Surface of Ferrite)

  • 김성청
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.17-25
    • /
    • 1997
  • This paper aims to clarify the effects of grinding conditions on the grinding force, ground surface and chipping size of workpiece in surface grinding of various ferrites with the resin bond diamond wheel. The main conclusions obtained were as follows: In a constant peripheral wheel speed, the specific grinding energy is fitted by straight lines with grinding depth coefficient($\delta$) in a logarithmic graph. The effect of both depth of cut and workpiece speed on grinding energy becomes larger in the order of Mn-Zn, Cu-Ni-Zn and Sr. When using the diamond grain of the lower toughness, the roughness of the ground surface becomes lower. The ground surfaces show that the fracture process during grinding becomes more brittle in the order of Sr, Mn-Zn and Cu-Ni-Zn. The chipping size at the corner of workpiece in grinding increases with the the increases of the depth of cut and workpiece speed, and the decrease of peripheral wheel speed. The effect of both depth of cut and workpiece speed on chipping size becomes more larger in the order of Sr, Mn-Zn and Cu-Ni-Zn.

  • PDF

전해 드레싱을 이용한 고품의 내면 연삭 가공에 관한연구 (A Study on the Internal Grinding with High Quality Using Interval Type Electrolytic Dressing Method)

  • 강재훈
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.138-143
    • /
    • 2000
  • The establishment of a practical ultra-precision grinding technique using Diamond and CBN wheels is one of the major key technolo-gies to improve production techniques for machine-to-difficult materials without finishing process such as lapping and polishing. But the special efficient dressing technique for ultra-fine grit type grinding wheels to stabilize the grinding ability was not developed. Recently electrolytic in-process dressing technique is proposed to ultra-fine grit type metal bonded diamond wheels to protrude abra-sives continuously from the tool surface. This technology can be widely used to surface grinding and cylindrical grinding but cannot be used efficiently to internal grinding because of the electrode attachment trouble. This paper describes the effect of interval type electrolytic dressing as proposed newly to cast iron bonded diamond wheel for efficient internal grinding with mirror type high quality ground surface.

  • PDF

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

세라믹재 연삭시 다이아몬드 휠의 수명 판정 (Determination of Diamond Wheel Life in Ceramic Grinding)

  • 임홍섭;유봉환;공재향;김홍원
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.16-21
    • /
    • 2004
  • In order to investigate the characteristics of diamond wheel grinding of ceramic materials, grinding resistance, surface roughness of ground surface and image of grinding wheel were acquired using experimental method. Through the experiments, this makes it possible to observe grinding wheel behavior by grinding resistance, surface roughness and cutting edge ratio. In case of $Al_2O_3$, cutting edge ratio is bigger than that of $ZrO_2$ and $Si_3N_4$. That's because $Al_2O_3$ has a characteristic of low fracture toughness and bending stress.