• 제목/요약/키워드: Diamond lapping

검색결과 42건 처리시간 0.032초

다이아몬드 촉침의 이온 스파터 가공조건에 관한 연구 (A study on the machining condition of diamond stylus using ion sputter machining)

  • 한응교;노병옥;김병우
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1495-1508
    • /
    • 1990
  • 본 연구에서는 전류밀도와 가공시간을 변화시켰을 때의 가공량, 가공상태를 검토해 보았으며, 촉침홀더의 가공각도를 달리하거나 재부착문제를 해결하기 위한 마 스크의 사용여부에 따른 촉침의 가공상태를 알아보기 위해 초기선단반경 2$\mu\textrm{m}$, 선단각 90˚의 다이아몬드 촉침을 이온스파터 가공기를 사용하고, 가공조건을 변화시켜서 초 정밀 가공품의 표면거칠기 측정에 적합한 0.5$\mu\textrm{m}$ 이하의 미세한 선단반경을 갖는 촉침 을 가공하기 위한 가공조건에 대한 실험을 하였다.

고정 입자 정반을 이용한 사파이어 기판의 연마 특성 연구 (Study on the Lapping Characteristics of Sapphire Wafer by using a Fixed Abrasive Plate)

  • 이태경;이상직;조원석;정해도;김형재
    • Tribology and Lubricants
    • /
    • 제32권2호
    • /
    • pp.44-49
    • /
    • 2016
  • Diamond mechanical polishing (DMP) is a crucial process in a sapphire wafering process to improve flatness and achieve the target thickness by using free abrasives. In a DMP process, material removal rate (MRR) is a key factor to reduce process time and cost. Controlling mechanical parameters, such as velocity and pressure, can increase the MRR in a DMP process. However, there are limitations of using high velocities and pressures for achieving a high MRR owing to their side effects. In this paper, we present the lapping characteristics and improvement of MRR by using a fixed abrasive plate through an experimental study. The change in MRR as a function of velocity and pressure follows Preston's equation. The surface roughness of a wafer decreases as the plate velocity and pressure increases. We observe a sharp decrease in MRR over the lapping time at a high velocity and pressure in the velocity and pressure test. An analysis of surface roughness (Rq and Rpk) indicates that wear of abrasives decreases the MRR sharply. In order to investigate the effect of abrasive wear on the MRR, we utilize a cutting fluid and a rough wafer. The cutting fluid delays the wear of abrasives resulting in improvement of MRR drop. The rough wafer maintains the MRR at a stable rate by self-dressing.

광 커낵터용 세라믹 Ferrule가공기술 개발에 관한 연구

  • 이응숙;이성국;황경현;정명영;최태구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.18-22
    • /
    • 1992
  • This paper presents the process of manufacturing technology of ceramics ferrule for optical fiber connector. Precision zirconia ceramic ferrules is widely used for high performance and low cost single mode optical fiber connectors. To polish the hole of the zirconia ceramic ferrule, the wire lapping instrument is developed and the machining experiment is conducted. Through the centerless grinding using diamond wheel the surface roughness of zirconia ceramics ferrule is below the 1 .mu. m Rmax.

자성체 피복형 연마입자를 이용한 유리의 평면 래핑의 기초 연구 (Fundamental Research on Polishing of Glass Plates by Coated-type Magnetic Abrasives)

  • 문봉호
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.108-112
    • /
    • 2011
  • In order to obtain excellent flatness and surface roughness of glass substrate disk, uniform distribution of abrasives should be important for uniform polishing. We introduced coated-type magnetic abrasives and magnetic field to a lapping for the improvement of surface roughness and removal rate. Polishing properties with the conventional diamond abrasives and the coated-type magnetic abrasives were compared. As a result, the coated-type magnetic abrasives showed small surface roughness and large removal rate by applying magnetic field. And it also was shown that coated-type magnetic abrasives could save the more amount of polishing liquid under the same removal rate than the conventional diamond abrasives can.

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권2호
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

엔지니어링 세라믹스의 경면연마를 위한 효율적인 슈퍼피니싱 조건의 결정 (Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Engineering Ceramics)

  • 김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.76-81
    • /
    • 2014
  • The Engineering ceramics have some excellent properties as materials for modern mechanical and electrical components. It is, however, not easy to polish them efficiently because they are strong and hard. This study is carried out to obtain a mirror surface on engineering ceramics by surperfinishing with high efficiency. To achieve this, we conducted a series of polishing experiments using representative engineering ceramics, such as $Al_2O_3$, SiC, $Si_3N_4$ and $ZrO_2$, using diamond abrasive film from the perspective of oscillations peed, the rotational speed of the workpiece, contact roller hardness, contact pressure and feed rate. Furthermore, the polishing efficiency and characteristics for engineering ceramics are discussed on the basis of optimal polishing time and surface roughness. Our results confirmed that efficient superfinishing conditions and polishing characteristics of engineering ceramics can be determined.

사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구 (A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP)

  • 조원석;이상직;김형재;이태경;이성범
    • Tribology and Lubricants
    • /
    • 제32권2호
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.

디지탈 VTR 드럼용 반구 고속 정밀베어링의 경면연마 시스템 (Development of Mirror~like Polishing System for Hemispherical High-¬speed Precision Bearing for Digital VTR Drum)

  • 김정두;최민석;우기명;김영일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.24-28
    • /
    • 1996
  • Mirror-like polishing system of hemisphericall high-speed precision bearing for digital VTR drum was developed. Mechamism of the polishing process was analyzed in the view point of polishing contact range and contact length between the tool and the workpiece surface. It was suggested that the two stage polishing process adoptiong the diamond grinding wheel and polishing tool instead of multistage lapping processes, which enables the mass production of the bearing by reduction of polishing time.

  • PDF

광 커넥터용 세라믹 Ferrule 가공기술 개발에 관한 연구 (Development of Manufacturing Technology of Ceramics Ferrule for Optical Fiber Connector)

  • 이응숙;이성국;황경현;정명영
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.67-72
    • /
    • 1992
  • This paper presents the process of manufacturing technology of ceramics ferrule for opitcal fiber connector. Precision zirconia ceramic ferrules is widely for high performance and low cost single mode optical fiber connectors. To polish the hole of the zirconia ceramic ferrule, the wire lapping instrument is developed and the machining experiment is conducted. Through the centerless grinding using diamond wheel the surface roughness of zirconia ceramics ferrule is below the 1$\mu$m Rmax.

  • PDF