• Title/Summary/Keyword: Diamond etching

Search Result 101, Processing Time 0.03 seconds

Silicon microstructure prepared by a dry etching (Dry Etching에 의해 제작된 실리콘 미세 구조물)

  • 홍석민;임창덕;조정희;안일신;김옥경
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.242-248
    • /
    • 1997
  • Porous silicons were prepared by dry etching as well as by chemical etching. The latter is a conventional method used by many researchers. Meanwhile, the former is a new method we developed. Also the porous silicon structure was made by E-beam lithography technique. However, due to the limit of this technique, minimum size we could produce was about 0.3 $\mu\textrm{m}$ in diameter on silicon wafer. In a new method, the porous silicon microstructure was fabricated by using Reactive Ion Etching method after covering with diamond powder on 4 inch wafer by using spin coater. In this method, diamond powder acted as a mask. The morphology of samples prepared under many different conditions were analysed be SEM and AFM. And we measured PL spectra for the samples. Based on these results, we observed the structure of a few hundreds $\AA$ in size from porous silicon which was made by dry etching with diamond powder. Also the PL peak for these samples lied around 590 nm compared to 760 nm for chemically etched porous silicon.

  • PDF

XPS Characterization and Morphology of MgO Thin Films grown on Single-Crystalline Diamond (100)

  • Lee, S.M.;Ito, T.;Murakami, H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.19-27
    • /
    • 2003
  • Morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723K by means of electron beam evaporation using MgO powder source. Atomic force microscopy images indicated that the film grown at RT without $O_2$ supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without $O_2$ has the closest composition to the stoichiometric MgO, and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively. These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

  • PDF

Microshear bond strength of a self-etching primer adhesive to enamel according to the type of bur (삭제기구의 종류에 따른 자가부식 프라이머 접착제의 법랑질에 대한 미세전단 결합강도)

  • Jeong, Jin-Ho;Cho, Young-Gon;Lee, Myung-Seon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • Objectives: The purpose of this study was to compare the microshear bond strength (uSBS) to enamel prepared with different burs and to determine what type of bur were chosen when a self-etching primer adhesive was used. Materials and Methods: Enamel of forty-two human molars were used. They were divided into one of six groups (n = 7), Group 1, coarse (125 - 150 ${\mu}m$) diamond bur; Group 2, standard (106 - 125 ${\mu}m$) diamond bur; Group 3, fine (53 - 63 ${\mu}m$) diamond bur; Group 4, extrafine (20 - 30 ${\mu}m$) diamond bur; Group 5, plaincut carbide bur (no. 245); Group 6, cross-cut carbide bur (no. 557). Clearfil SE Bond and Clearfil AP-X (Kuraray Medical Inc.) was bonded to enamel surface. The bonded specimens were subjected to uSBS testing. Results: The uSBS of Group 4 was the highest among groups and it was significantly higher than that of Groups 1, 2, 3, and 6 (p < 0.05), but it was not significantly different from that of Group 5. Conclusions: Different burs used on enamel surface affected the microshear bond strengths of a self-etching primer adhesive to the enamel surface. In the case of Clearfil SE Bond, extrafine diamond and plain-cut carbide bur are recommended for bonding to enamel.

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

Boron-doped Diamond Thin Film for Electrochemical Biosensors

  • Jianzhong-Zhu;Lu-Deren
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.156-158
    • /
    • 1998
  • This paper describes the preparation of boron-doped polycrystalline diamond thin film whose electrical resitivity is lower than $10^{-1}\Omega$cm. The 1$\times$1$\textrm{mm}^2$ microelectrodes, its conducting line with 0.2mm wide and 0.5$\times$0.5$\textrm{mm}^2$ pads was patterned by reactive ion beam etching. A glucose microsensor based on diamond film microelectrode and pyramidal containment produced on silicon by anisotropic etching was developed. Its advantages are high sensitivity and high stability.

  • PDF

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

EFFECT OF SURFACE TREATMENTS ON THE REPAIR BOND STRENGTH OF COMPOSITES (복합레진의 수리 시 표면처리가 결합강도에 미치는 영향)

  • Choi, Jung-In;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taek
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.692-699
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength between new and old composite resin. The prepared resin specimens were separated 6 groups, and each group then received a different surface treatment. Then the repair material was added. Shear bond strengths for repair were measured after 7 days and the results were analyzed by using one way ANOVA. The results were as follows; 1. Group 3, 4(air abrasion) showed significantly higher shear bond strength than Group 1(phosphoric acid)(p<0.05). Group 5, 6(diamond bur) showed higher bond strength than Group 1(phosphoric acid) but not significantly different( p>0.05). 2. Group 2(self-etching adhesive) showed lower shear bond strength than Group 1(phosphoric acid) but not significantly different(p>0.05). 3. There was no statistically significant difference between Group 3(air abrasion) and Group 4(air abrasion+etching). 4. There was no statistically significant difference between Group 5(diamond bur) and Group 6(diamond bur+etching). In conclusion, the surface treatment with air abrasion resulted in higher repair bond strength than other methods. Repair bond strength was not significantly affected by acid etching.

  • PDF

COMPARISON OF RETENTIVE FORCE OF REPAIR RESIN BY VARIOUS SURFACE TREATMENT METHODS IN THE REPAIR OF FRACTURED PORCELAIN FUSED TO METAL CROWN (도재소부전장관(陶材燒付前奬冠) 파절수리시(破折修理時) 표면처리(表面處理) 방법(方法)에 따른 수복(修復)레진의 유지력(維持力)에 관(關)한 연구(硏究))

  • Lim Heon-Song;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.1
    • /
    • pp.73-83
    • /
    • 1992
  • Now composite resin restoration is clinically accepted in the repair of fractured PFM case, many mechanical surface treatment methods are performed to increase retentive force. The main purpose of this study was to compare the retentive force among the possible surface treatments and to insure the best method for the clinical application to the fractures porecelain and the exposed metal surface. To compare and to analyze the retentive force of repair resin, porcelain specimen were divided into 2 groups, etching group and non-etching group, and etching group were treated with 37% $H_3PO_4$, 1.23% APF, 10% HF and non-etching groups were treated with diamond bur, micro-sandblasasting. Also, metal specimens were divided by 2 groups : one was non-precious metal group which was treated with diamond bur, micro-sandblasting and tin plating and electrolytic etching, the other was precious metal group which was composed of micro-sandblasting treatment only and tin plating treatment with micro-sandblasting. Each specimen had been restored for 48 hours and the bond strength of each specimen was calculated with Universal testing machine. The results were as follows : 1. Porcelain specimen had higher bonding strength than metal specimen for the repair resin(P<0.01). 2. In porcelain specimen, 10% HF etching group had the highest bonding strength among etching and non-etching group. 3. Metal specimen treated with micro-sandblasting had highest bonding strength among the non-sandblasting had hightest bonding strength among the non-precious group, tin plating group had higher bonding strength than micro-sandblasting group between the precious metal groups. 4. Bonding strength of tin plating was increased in precious metal group only.

  • PDF

Deposition of Diamond Film by Hydrogen-oxyacetylen Combustion Flame

  • Ko, Chan-Kyoo;Park, Dong-Wha
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • Diamond film was deposited on Mo substrate at atmospheric pressure using combustion flame apparatus with the addition of H2. At a temperature above 100$0^{\circ}C$, parts of the film were converted into graphites and these were etched by hydrogen atoms. With increasing $C_2H_2/O_2$ ratio, the nucleation density of the film increased. But the greater part of the film was formed with cauliflower-shaped amorphous carbon. These amorphous carbn were crystallized etching amorphous carbon.

  • PDF