• Title/Summary/Keyword: Diamond cutting tool

Search Result 186, Processing Time 0.027 seconds

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

Prediction the surface profile in the single point diamond turning (정밀 선삭가공에서의 표먼거칠기곡선 예측)

  • Yoon, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

Tool-Wear Characteristics of the Ceramic, CBN and Diamond Tools in Turning of the Presintered Low Purity Alumina (저순도 알루미나 예비소결체 선삭시의 세라믹, CBN 및 다이아몬드 공구의 마멸 특성)

  • Lee Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.80-88
    • /
    • 2006
  • In this study, unsintered and presintered low purity alumina ceramics were machined with various tools to clarify the machinability and the optimum cutting conditions. The main conclusions obtained were as fellows. Machined with ceramic tool, the ceramics presintered at the temperature range of $1000\~1100^{\circ}C$ showed the best machinability due to the adhesion formed in weared surface within a certain cutting speed range. In the above combination and conditions, the ceramic tool showed the highest productivity through all experiments. The life of CBN tool was longer in machining of the ceramics presintered at $1000^{\circ}C$ than in the case of that presintered at $600^{\circ}C$, but the diamond tool showed adverse tendency. In machining of the ceramics presintered at $1000^{\circ}C$, the ceramic tool exhibits the longest tool life in high speed, the tool lives became extremely worse in the order of CBN tool and diamond tool. However, in the case of the ceramics presintered at $600^{\circ}C$, the diamond tool shows the longest tool life, the tool lives was much worse in the order of CBN tool and ceramic tool.

Deposition of Diamond Like Carbon Thin Films by PECVD (PECVD법에 의한 DLC 박막의 증착)

  • 김상호;김동원
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.2
    • /
    • pp.122-128
    • /
    • 2002
  • This study was conducted to synthesize the diamond like carbon films by plasma enhanced chemical vapor deposition (PECVD). The effects of gas composition on growth and mechanical properties of the films were investigated. A little amount of hydrogen or oxygen were added to base gas mixture of methane and argon. Methane dissociation and diamond like carbon nucleation were enhanced by installing negatively bias grid near substrate. The deposited films were indentified as hard diamond like carbon films by micro-Raman spectroscopy. The surface and fractured cross section of the films which were observed by scanning electron microscopy showed that film growth is very slow as about 0.3$\mu\textrm{m}$/hour, and relatively uniform with hydrogen addition. Vickers hardness of tungsten carbide (WC) cutting tool increased from about 1000 to 1600~1800 by deposition of DLC film, that of commercial TiN coated tool was about 1270. In cutting test of aluminum 6061 alloy, DLC coated cutting tool showed 1/3 or lower crater and flank wear than TiN coated or non-coated WC cutting tools.

An AFM-based Edge Profile Measuring Instrument for Diamond Cutting Tools

  • Asai, Takemi;Motoki, Takenori;Gao, Wei;Ju, Bing-Feng;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.54-58
    • /
    • 2007
  • This paper describes an atomic force microscope (AFM)-based instrument for measuring the nanoscale cutting edge profiles of diamond cutting tools. The instrument consists of a combined AFM unit and an optical sensor to align the AFM tip with the top of the diamond cutting tool edge over a submicron range. In the optical sensor, a aser beam is emitted from a laser diode along the Y-axis and focused to a small beam spot with a diameter of approximately $10{\mu}m$ at the beam waist, which is then received by a photodiode. The top of the tool edge is first brought into the center of the beam waist by adjusting it in the X-Z-plane while monitoring the variation in the photodiode output. The cutting tool is then withdrawn and its top edge position at the beam center is recorded. The AFM tip can also be positioned at the beam center in a similar manner to align it with the top of the cutting edge. To reduce electronic noise interference on the photodiode output and thereby enhance the alignment accuracy, a technique is applied that can modulate the photodiode output to an AC signal by driving the laser diode with a sinusoidal current. Alignment experiments and edge profile measurements of a diamond cutting tool were carried out to verify the performance of the proposed system.

Prediction of Surface Roughness on the PCD Tool Turned Aluminum Alloys by using Regression Analysis (Al합금 PCD 선산가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.41-47
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystaline Diamond) has been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of different types of aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

A Prediction of Surface Roughness on the PCD Tool Turned Al5083 by using Regression Analysis (Al5083 PCD 선삭가공에서 회귀분석에 의한 표면거칠기 예측)

  • Lee, Sun-Woo;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.69-74
    • /
    • 2012
  • Surface roughness is widely used as an index for processing degree of accuracy. Recently, regression analysis to predict the machining results are actively used to characterize a cutting operations. In the past, diamond machining had been used for ultra precision cutting operation, but now industrial diamond tools like PCD(Polycrystalline Diamond) have been widely used in ultraprecision machining of nonferrous metals. In this study, the authors focus on the effect of PCD tool property on the surface roughness of Al5083 aluminum alloy after cutting process by CNC operated lathe. Based on the regression analysis approach on a surface roughness data obtained by experiment, predictive analysis of surface roughness is effective to achieve better surface quality.

Construction of 2-3 Dimensional Attractor System for Cutting Characteristics Evaluation of Metals (금속의 절삭성 평가를 위한 2-3차원 어트랙터 시스템의 구축)

  • Yun In Sik;Lee Jong Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This study proposes the construction of 2-3 dimensional attractor system for cutting characteristics evaluation of metals. Also this paper aims to find the optimal cutting conditions of diamond turning machine by measuring surface form and roughness to perform the cutting experiment of metals, which are aluminum, with diamond tool. As well, according to change cutting conditions such as feed rate, using diamond turning machine to perform cutting processing, by measuring cutting force and surface roughness and according to cutting conditions the aluminum about cutting properties. Trajectory changes in the attractor indicated a substantial difference in attractor characteristics. Constructed 2-3 dimensional attractor system in this study can be used for cutting characteristics evaluation of metals.