• 제목/요약/키워드: Diamond Grinding Tool

검색결과 59건 처리시간 0.025초

ENGINEERING CERAMICS의 평면연삭가공 특성에 관한 연구

  • 김호철;김원일;강재훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.136-144
    • /
    • 1992
  • Recently, Silicon Nitrde ceramic is regarded as the representative engineering ceramic with the excellent mechanical properties and many functions for mechanical components and parts among various kinds of ceramics in the mechanical industry. But, during the manufacturing of engineering ceramics, there is many volumetric shrinkage coupled with a distortion of the parts which is produced. Due to the requirement for high accuracy of size, form, and surface finish of the components, machining is needed surely. Nowdays, grinding with a resin bond type diamond wheels has been generally applied to machining of the engineering ceramics in the whole world because that it can be conveniently proceeded for workers to dress of tool and made with high reliability in producing factories among many bond type super-abrasive wheels yet. It is important task for attaining prescribed mechanical components with high reliability to observe the grinding mechanism of ceramics as like generation of cracks and chipping of material during process. Because they considerably effects on the strength characteristic of machined mechanical components. In this study, various surface grinding experiments using resin bond type diamond wheels are carried out for Silicon Nitride ceramic. Grinding mechanism of ceramics is observed experimentally and the relationship with various conditions is also attained. Form this experimental study, some useful machining data and information to determine proper machining condition for grinding of Silicon Nitride ceramic is obtained.

취부용 피스(piece)제거 및 사상 작업 자동화장비 개발에 관한 연구 (A Study on a Development of the Grinding Robot to Remove Welding-bid of Working Pieces)

  • 노효원;김기정;임래수;김호경
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.136-143
    • /
    • 2008
  • This paper presents the application of a robot which aims at grinding automatically welding-bead remained in the removal job of working pieces for shipbuilding. In specific, the investigation on this application is composed of two parts; one topic is on the development of a robot platform vertically movable on a steel plate of hull, while the other topic is of the development of a grinding tool mechanism in order to remove welding-beads by using a diamond wheel installed on a servo cylinder (which can result in high working pressure on the grinding wheel). Besides, the development of a vision system for tracking welding-beads as well as recognizing welding surfaces is added for the convenience of this robot application to the removal of welding-beads remained in the working pieces for shipbuilding.

  • PDF

다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구 (A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills)

  • 김형철;김기수;함승덕;김홍배;남궁석
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF

초정밀 비구면 렌즈 금형가공시스템 개발 (Development of machining system for ultra-precision aspheric lens mold)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

세라믹 재료의 연삭성능 평가 (Evaluation for Grinding Performance of Ceramics)

  • 정을섭;김성청;김태봉;소의열;이근상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.355-359
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance of $AI_2O_3$ was less then that of $Si_3N_4$ and $ZrO_2$. It is because the resistance for grain shedding is less then that for layer formation. For the case of $Si_3N_4$ and $ZrO_2$, as the grain mesh number of wheel increases, the surface roughness decreases. For the case of $AI_2O_3$, the surface roughness does not decreases. For the case of $Si_3N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $AI_2O_3$, grinding is carried out by grain shedding process.

  • PDF

휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가 (Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone)

  • 백승엽;이은상
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

신소재 경면가공용 CNC 연삭기의 가공성능평가 (Evaluation of the CNC grinding machine for ultra-precision machining of advanced materials)

  • 김현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.92-97
    • /
    • 1994
  • The there axis CNC grinding machine tool for ultra-precison mirror surface grinding of advanced materials such as ceramics and other hard and brittle materials was designed and manufactured. The grinding machine is composed of the air spindle, the high damping resin concrete bed, and the three axis CNC controller with the high resolution AC servo motor. To investigate the dynamic properties of the grinding machine, the natural frequencies of the spindle and the headstock were experimentally measured. The truing method using the break truer to revise the shape of the metal bonded diamond wheel was developed. Form the results of the machining using the prototype three axis CNC grinding machine manufactured, the mirror surface were achieved.

  • PDF

$Si^3 N_4$ 구조용세라믹재의 연삭가공시 숫돌마멸에 따른 가공특성 (Machining Characteristics According to the Wheel Wear in Surface Grinding for Structural Ceramics of $Si^3 N_4$)

  • 왕덕현;김원일;신경오
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.9-16
    • /
    • 2003
  • In this study, the decision of dressing time for diamond wheel was analyzed by observing with acoustic emission signals and surface roughness, and also obtained the machining characteristics by weibull distribution plot for the values of bending strength. From the experimental study, it was possible to predict the time of re-dressing for the diamond grinding wheel with the analysis of acoustic emission signals and surface roughness values, and following conclusions were obtained. The root-mem-square values of acoustic emission signals were obtained low as the increased of table speed for different abrasive grain size. This is caused by the lack of grinding power which is not able to get rid of all real grinding mass of depth as the table speed is increased. The values of bending strength for ground $Si_3 N_4$ specimens were decreased for gain size of #400 than that of #60, but it was found that the surface roughness values for gain size of #60 were better than that of #400. As compared the shape parameter of weibull distribution plot for the values of bending strength, it was found that the reliability of bending strength for grain size of #60 increased than that of #400.

Si Cathode 개발을 위한 연삭 및 폴리싱 가공특성 (Processing Characteristics of Grinding & Polishing for Si Cathode Development)

  • 채승수;이충석;김택수;이상민;허찬;이종찬
    • 한국기계가공학회지
    • /
    • 제9권2호
    • /
    • pp.26-32
    • /
    • 2010
  • This paper reports some experimental result in grinding and polishing of silicon cathodes used in semiconductor manufacturing process. Cup shape diamond core wheels were used in experiments and the radial and tangential grinding forces were measured with surface roughness. In polishing experiments, flat type and donut type wool polishing tools were tested. The experimental results indicate that the grinding forces are proportional to the material removal rates and the surface roughness are inversely proportional to the spindle speed. The surface roughness of polished Si decreases with polishing time and higher spindle speed.