• Title/Summary/Keyword: Diamond Cutting Tool

Search Result 186, Processing Time 0.027 seconds

A Study on the Precision Machining Characteristics in Heavy Cutting of Al-alloy (Al합금의 중절삭시 정밀가공 특성에 관한 연구)

  • 권용기;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.203-208
    • /
    • 2002
  • This paper deals with turning experiments of aluminium alloy using a single crystal diamond with round cutting edge. A face cutting was conducted using a special precision machine to study the characteristic phenomena in heavy cutting of aluminium alloy. In many cases, one of the most important matter on the surface integrity is about a damaged layer remaining just under the surface after machining. A machined surface roughness can be improved at a small geometrical surface roughness under special cutting conditions, even if a steady vibration exists between a tool and a workpiece.

  • PDF

State Monitoring of Micro-Grooving using AE Signal (AE신호를 이용한 micro-grooving의 상태감시)

  • 이희석;손성민;김성렬;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.332-335
    • /
    • 1997
  • With the advance of precision technique, the optical system is more precise and complex and the machining method of optical element which is composed of micro-grooves is developed. Especially, the method of micro-grooving using diamond tool is used widely owing to many merit, but has problems of damage of surface roughness due to tool wear and tool fracture. This paper deals with state monitoring using AE RMS in the micro-grooving. The change of AE RMS is very small with increment of cutting velocity and depth of cut. In spite of constance magnitude of principal force in machining using diamond tool of tool wear and tool fracture, AE RMS is highly fluctuated. Because changing of cutting state has relevance to surface roughness profile, surface toughness profile is expected using AE RMS.

  • PDF

다이아몬드 공구를 사용한 선삭 가공에서의 표면 형상 예측

  • 윤영식;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.102-107
    • /
    • 1993
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm are the accuracytargets to be achieved today. Suchrequirements cannot be satisfiedby the conventional machining processes. Single point diamond turning is one of the new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting modelof a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influences of the cutting conditions, the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe and their influences via the cutting forces upon the surface roughness have been estimated.

A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials (연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구)

  • 홍성민;이동주;제태진;최두선;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

A Study on the Polishing Machining of Diamond for Jewelry (보석용 다이아몬드의 연마가공)

  • Kim Woo-Soon;Kim Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-132
    • /
    • 2006
  • The present study deals with polishing machining of diamond for jewelry using developed automatic polishing machine that can cut diamond to have 58 facets in a brilliant cutting which has been hardly achieved by a conventional manually operating polishing machine. Upon the 3-dimensional Sarin M/C test and analysis on the machined diamond by the developed automatic polishing machine its proportion and finishing turned out to be better than the machined diamond by the conventional manually operating polishing machine.

A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process (다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF