• Title/Summary/Keyword: Diamond Abrasive

Search Result 89, Processing Time 0.026 seconds

A SCANNING ELECTRON MICROSCOPIC STUDY OF CAVITY WALL (와동면(窩洞面)의 주사전자현미경적(走査電子顯微鏡的) 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 1985
  • The purpose of this study was to observe the facial, lingual and gingival walls of the cavity walls with various kinds of cutting tools. Class II cavities were prepared in newly extracted sound humen mandibular 1st left premolars, and observed in Sanning electron microscope. Diamond point (#201) and Tungsten Carbide burs (#170L) were used in ultra high speed handpieces (rpm 200000), and Tungsten Carbide bur (#702) and Steel bur (#560) were used in conventional handpieces (rpm 6000). All cavities were prepared under water spray, except for some which were finished with a dry abrasive stone (#57). Some cavities were finished with chisels (#41, 42, 83). The following results were obtained. 1. The cavity walls prepared with Diamond point were rougher than the cavity walls with Carbide burs and Steel burs. 2. The chisels were produced the smoothest surface. 3. The cavity walls which were prepared with cutting blades rotated toward enamel surface from outside, were smoother than cavity walls which were prepared with cutting blades rotated toward outside from the enamel surface.

  • PDF

Nano Wear Behavior of a-C Films with Variation of Surface Roughness (표면거칠기의 변화에 따른 a-C 박막의 나노마멸 거동)

  • 채영훈;장영준;나종주;김석삼
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nano-wear behavior of amorphous carbon films was studied by Atomic Force Microscopy. The a-C films are deposited on Si(100) substrate by DC magnetron sputtering method. The influences of different surface roughness on the nano-wear are investigated. Nano-wear tests were carried out using a very sharp diamond coated tip. Its spring constant was 1.6 N/m and radius of curvature was 110 nm. Normal force used in the wear tests ranged 0 to 400 nN. It was found that surface depression occurred during scratching because of plastic deformation and abrasive wear (cutting St ploughing). Wear depth increased linearly with normal force. Changing the surface roughness variables according to the bias pulse control, the less surface roughness decreased the wear depth. The thickness did not affect the wear resistance.

Fabrication Process and Mechanical Properties of Co-based Metal Bond in Diamond Impregnated Tools (다이아몬드 공구용 코발트계 합금 결합제의 제조 및 기계적 성질)

  • Lee, Gi-Seon;Jeong, Seung-Bu
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.532-539
    • /
    • 2000
  • Co-0.5C-(15~20)Cr-20Ni-8W-(2~7)Fe alloy bond in diamond-impregnated abrasive tool was synthesized by ball-milling and mechanical alloying process. When the powders were mechanical alloyed for 6h, micro-welding in most metal powders was observed irrespective of addition of stearic acid. Without stearic acid in metal powders, partial-ly coarse powders were obtained, which could be unfaverable to the densification of composite of composite powders. The hot-pressed compacts showed rupture strength of 1100MPa and hardness of about $46H_{RC}$, respectively.

  • PDF

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Forming Properties of Micro Random Pattern Using Micro Abrasive Paper Tool by Roll to Plate Indentation Method (미세 지립 페이퍼 공구와 롤투플레이트 압입공정을 이용한 마이크로 랜덤 패턴의 성형특성)

  • Jeong, Ji-Young;Je, Tae-Jin;Moon, SeungHwan;Lee, Je-Ryung;Choi, Dae-Hee;Kim, Min-Ju;Jeon, Eun-chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.385-392
    • /
    • 2016
  • Recently in the display industry, demands for high-luminance and resolution of display devices have been steadily increasing. Generally, micro linear patterns are applied to an optical film in order to improve its properties of light. However, these patterns are easily viewed to eyes and moire phenomenon can be occurred. Micro random patterns are proposed as a method to solve these problems, increasing light-luminance and light-diffusion. However, conventional pattern manufacturing technologies have long processing times and high costs making it difficult to apply to large area molds. In order to combat this issue, micro-random patterns are formed by using a roll to plate indentation method along with abrasive paper tools composed of AlSiO2, SiC, and diamond grains. Also, forming properties, such as size and fill-factor of random patterns, are analyzed depending on type, mesh of abrasive paper tools, and indentation forces.

Effect of Peeling Blades and Abrasives on Mechanical Peeling of Cynanchum wilfordii Hemsley (박피(剝皮)날 및 연마재(硏磨材)가 백하수오(白何首烏) 기계박피(機械剝皮)에 미치는 영향(影響))

  • Kim Ju;Kim Chang-Soo;Song Yeung-Eun;Lee Yun-Suk;Shim Jin-Chan;Han Jong-Hyun;Kwak Joon-Soo
    • Korean Journal of Acupuncture
    • /
    • v.18 no.1
    • /
    • pp.165-170
    • /
    • 2001
  • A rapid increasing in cultivation area due to favorable price temporarily and decreasing in consumer's demands caused by economic depressions recently, lead the price of Cynanchum wilfordii Hemsley to decline sharply. Thus, it may give rises to weakening of cultivation bases in Cynanchum wilfordii Hemsley. To investigate optimal mechanical peeling conditions of Cynanchum wilfordii Hemsley, protruded rubber, plastic pad, diamond shape's steel and palstic brush were introduced as blades and artificial stone, sand and small pebble were done as abrasives. The main results obtained were summarized as follows; 1. It took 2 minutes per 1kg in mechanical peeling of Cynanchum wilfordii Hemsley's raw root whereas 36 minutes in manual peeling and values of lightness showed more higher in manual peeling than in mechanical peeling. 2. Yield in combination of diamond shape's steel blade and sand abrasive showed the lowest at 89.9% among treatments and peeling rates in combination of diamond shape's steel blade and small pebble showed the highest at 71.3% in mechanical peeling. 3. Lightness, one of the most important factors in determining quality of Cynanchum wilfordii Hemsley, showed the highest in combination of diamond shape's steel blade and small pebble brasive at 61.90 in mechanical peeling. 4. As the speed of rotation gets faster, yields tend to lower in mechanical peeling. Peeling rates and lightness showed the highest at 66.8%, 57.96 respectively among treatments at 30 r.p.m. in mechanical peeling.

  • PDF

EFFECT OF VARIOUS MECHANICAL TREATMENTS OF HYDROXYAPATITE-COATED IMPLANT SURFACES (Hydroxyapatite 피막 처리된 임프란트에 대한 여러가지 기계적 표면처리방법이 임프란트 표면조도 및 성상에 미치는 영향)

  • Yang, Kyung-Ran;Jung, Oh-Chul;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.131-143
    • /
    • 1994
  • For maintenance of exposed implant in healthy state, it is necessary to treat the surface of implant fixture and provide the surface adjustable to surrounding tissues. Variable techniques have been introduced such as citric acid and air-abrasive system to treat the failed implant. Although when the rough surface of HA coated implant was exposed to oral environment, the surface treatment method with citric acid or air-abrasive system is effective for removal of bacterial endotoxin, it is unsuccessful to prevent plaque deposition due to difficulty in removal of rough surface of HA coated implant. Thus, in this study the method that removes bacterial endotoxin and makes smooch surface without alteration of surface characteristics was studied. HA coated disc manufactured by IMZ Co. Was treated with high speed diamond bur, low speed diamond bur, stone bur, rubber point, jetpolisher. And then its surface state was examined with profilometer and SEM to evaluate the surface smoothness, and its surface component was analyzed with EDX to evaluate wheter the surface characteristics were altered or not. As a result, following results were obtained. When the surface roughness of each implant disc was measured by profilometer, the group I showed a $R_{max}\;2.11{\mu}m$ and the group II, III, IV, V showed a $R_{max2}\;4.17{\mu}m$, $7.28{\mu}m$, $8.61{\mu}m$ and $39.44{\mu}m$ respectively. That is, surface smoothness was highest in the group I and it has been gradually decreased in the group II, III, IV and V. Under the SEM examination, the group I showed relatively smooth surface and the group II showed slightly rougher surface than the group I due to partially remaining HA particles while most HA particle was removed. The group III and IV showed rough topography due to HA particles that was not grinded, and HA coated surface in group V showed very irregular surface with deep groove and prominence. In cross-sectional view, the group I showed uniform surface, and the group III, IV showed rough surface due to remaining HA particles but the thickness of HA coating was remarkably reduced. The group II has similar pattern in group I, and the group V showed about $40{\mu}m$ thickness although it was not constant. By analysis of surface component with EDX, the group II in which the grinding was effective showed a small quantity of calcium and phosphorous and the group III, IV, in which the grinding was incomplete showed calcium and phosphorus peak. In all experimental group, no other than titanium, aluminum, calcium, phosphorus was observed.

  • PDF

Effect of Free Abrasives on Material Removal in Lap Grinding of Sapphire Substrate

  • Seo, Junyoung;Kim, Taekyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.209-216
    • /
    • 2018
  • Sapphire is a substrate material that is widely used in optical and electronic devices. However, the processing of sapphire into a substrate takes a long time owing to its high hardness and chemical inertness. In order to process the sapphire ingot into a substrate, ingot growth, multiwire sawing, lapping, and polishing are required. The lap grinding process using pellets is known as one of the ways to improve the efficiency of sapphire substrate processing. The lap grinding process ensures high processing efficiency while utilizing two-body abrasion, unlike the lapping process which utilizes three-body abrasion by particles. However, the lap grinding process has a high material removal rate (MRR), while its weakness is in obtaining the required surface roughness for the final polishing process. In this study, we examine the effects of free abrasives in lap grinding on the material removal characteristics of sapphire substrate. Before conducting the lap grinding experiments, it was confirmed that the addition of free abrasives changed the friction force through the pin-on-disk wear test. The MRR and roughness reduction rate are experimentally studied to verify the effects of free abrasive concentration on deionized water. The addition of free abrasives (colloidal silica) in the lap grinding process can improve surface roughness by three-body abrasion along with two-body abrasion by diamond grits.

Effect of Surface Roughness of Sapphire Wafer on Chemical Mechanical Polishing after Lap-Grinding (랩그라인딩 후 사파이어 웨이퍼의 표면거칠기가 화학기계적 연마에 미치는 영향)

  • Seo, Junyoung;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.323-329
    • /
    • 2019
  • Sapphire is currently used as a substrate material for blue light-emitting diodes (LEDs). The market for sapphire substrates has expanded rapidly as the use of LEDs has extended into various industries. However, sapphire is classified as one of the most difficult materials to machine due to its hardness and brittleness. Recently, a lap-grinding process has been developed to combine the lapping and diamond mechanical polishing (DMP) steps in a single process. This paper studies, the effect of wafer surface roughness on the chemical mechanical polishing (CMP) process by pressure and abrasive concentration in the lap-grinding process of a sapphire wafer. In this experiment, the surface roughness of a sapphire wafer is measured after lap-grinding by varying the pressure and abrasive concentration of the slurry. CMP is carried out under pressure conditions of 4.27 psi, a plate rotation speed of 103 rpm, head rotation speed of 97 rpm, and slurry flow rate of 170 ml/min. The abrasive concentration of the CMP slurry was 20wt, implying that the higher the surface roughness after lapgrinding, the higher the material removal rate (MRR) in the CMP. This is likely due to the real contact area and actual contact pressure between the rough wafer and polishing pad during the CMP. In addition, wafers with low surface roughness after lap-grinding show lower surface roughness values in CMP processes than wafers with high surface roughness values; therefore, further research is needed to obtain sufficient surface roughness before performing CMP processes.

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF