• 제목/요약/키워드: Diametral tensile strength

검색결과 32건 처리시간 0.024초

Comparison of polymer-based temporary crown and fixed partial denture materials by diametral tensile strength

  • Ha, Seung-Ryong;Yang, Jae-Ho;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권1호
    • /
    • pp.14-17
    • /
    • 2010
  • PURPOSE. The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. MATERIAL AND METHODS. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (${\phi}\;4\;mm\;{\times}\;6\;mm$) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheff$\acute{e}$ test and independent sample t test ($\alpha\;=\;0.05$). RESULTS. Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. CONCLUSION. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.

응축형 복합레진의 기계적 성질에 관한 비교연구 (A COMPARATIVE STUDY ON THE MECHANICAL PROPERTIES OF CONDENSABLE COMPOSITE RESINS)

  • 정지아;문주훈;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • 제26권6호
    • /
    • pp.485-491
    • /
    • 2001
  • The purpose of this study was to compare the mechanical properties of three condensable composite resins and one hybrid composite resin. The compressive strength, diametral tensile strength, Vicker's microhardness were tested for mechanical properties of condensable composite resins (SureFil, Ariston pHc, Synergy compact), and hybrid composite resin (Z 100). The tested materials were divided into four groups: control group Z 100 (3M Co. USA), experimental group I Ariston pHc, (Vivadent, Co., Liechtenstein) experimental group II SureFil (Dentsply, Co., U.S.A.), experimental group III Synergy Compact (Coltene, Co., Swiss). According to the above classification, we made samples of SureFil, Ariston pHc, Synergy Compact, Z 100 with separable cylindrical metal mold. And then, we measured and compared the value of compressive strength, diametral tensile strength and Vicker's microhardness of each sample. (omitted)

  • PDF

Silica가 첨가된 지르콘 소결거동 (Sintering Behavior of Zircon with SiO2)

  • 이근봉;강종봉
    • 한국재료학회지
    • /
    • 제18권11호
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

지르코니아 필러를 첨가한 복합레진의 기계적 성질에 관한 연구 (A STUDY ON THE MECHANICAL PROPERTIES OF EXPERIMENTAL, COMPOSITES CONTAINING ZIRCONIA FILLER)

  • 류경희;최호영;최경규;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.421-434
    • /
    • 2000
  • The purpose of this study was to evaluate the influences of incorporation of zirconium-silicate on diametral tensile strength, shear bond strength to the enamel, and depth of cure of 7 experimental composites. One group contained no filler(group 1 or control group), and the other 6 composites contain 75% filler in which zirconium-silicate(Zr-Si) were 0%, 2%, 4%, 6%, 8%, 10% with reduced contents of silica filler, respectively. Both of fillers were treated with 1% silane (${\gamma}$-methacryloxypropyltrimethoxy silane). Light curable monomers were prepared by mixing Bis-GMA and TEGDMA with 3:1 ratio and adding camphoroquinone(CQ) 0.6% with tertiary amine 0.3%. Diametral tensile strengths of specimens with $3mm{\times}6mm$ were measured with Instron (No.4467, USA) with 1mm/min crosshead speed. Shear bond strengths of composites which bonded to bovine enamel etched with 37% phosphoric acid were measured at Instron Testing Machine with as same speed as in diametral tensile strengths. Depth of cure were measured by a method that composite was filled in cylinder mold, illuminated at one side. and uncured composite was removed with acetone, and the residual thickness of composite was measured. Following results were obtained ; 1. Composites containing 0%, 2%, or 4% zirconium-silicate filler(group 2, 3 and 4) showed the statistically higher diametral tensile strength than the others. (p<0.05) 2. Increase of zirconium-silicate filler contents reduced the diametral tensile strength of experimental composites. ($r^2$=0.8721, p=0.0002) 3. Increase of zirconium-silicate filler contents did not affect the shear bond strength of experimental composites. ($r^2$=0.2815, p=0.4067) 4. Increase of zirconium-silicate filler contents reduced significantly the depth of cure of experimental composites. ($r^2$=0.9700, p<0.0001) These results mean that the mechanical properties of composites could not be improved by incorporation of small amount of zirconium-silicate filler. Also, the increased contents of zirconium-silicates fillers was found to reduce the diametral tensile strength and depth of cure.

  • PDF

근관충전용 실러의 물리적 성질에 관한 연구 (A STUDY ON THE PHYSICAL PROPERTIES OF ROOT CANAL SEALERS)

  • 장영인;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.142-151
    • /
    • 1995
  • The purpose of this study was to compare and estimate the physical properties of five root canal sealers classified Calciobiotic root canals sealer as calcium hydroxide based sealer, Apatite root sealer type II as calcium phosphate based sealer, AH-26 as resin based sealer, Canals and Pulpdent root canals sealer as zinc oxide eugenol based sealer. The author investigated dimensional change and flow rate of canal sealers, diametral tensile strength and shear bond strength of sealers to dentin to evaluate the physical properties on affect of complete obturation of root canal and performed the total 100 specimens of each 25 sealers under the condition of root temperature according to manufacturer's instructions. All specimens were stored at $37{\pm}1^{\circ}C$ in 100 % relative humidity. A microscope for measurement of micro distance is used for the dimensional change test and evacuation methods using vaccum were used for the flow rate test. The result differed by the storage time measured on the tests of diametral tensile strength and shear bond strength to dentin. The following results were obtained ; 1 On the test of dimensional change, Canals and Pulpdent expanded slightly, AH-26 and Apatite showed the severe shrinkage after 48 hours. 2. AH-26 and Apatite were the excellent with each 24.59mm, 31.19mm after 3 minutes in the aspect of flow property. 3. On the diametral tensile strength, Calciobiotic root canals sealer showed the highest strength with 27.13kg/$cm^2$ after 48 hours, Apatite root sealer type II showed highest strength with 84.57kg/$cm^2$ after 120 hours. 4. On the shear bond strength to dentin, AH-26 was most excellent with 55.73kgf/$cm^2$ after 24 hours and with 134.71kgf/$cm^2$ after 120 hours.

  • PDF

필러의 실란처리농도가 복합레진의 특성에 미치는 영향 (INFLUENCES OF SILANE CONCENTRATION FOR FILLER SILANIZATION ON THE PROPERTIES OF COMPOSITES)

  • 조태희;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제26권1호
    • /
    • pp.23-31
    • /
    • 2001
  • The purpose of this study was to search the optimal silane concentrations for filler- silanization of seven experimental composites. Silica filer was a 25micron crushed type. 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0% silane($\gamma$-methacrylooxypropyltrimethoxysilane)were added into silica-filler with weight percentage (wt%). Mixtures(silica filler/silane)were reacted at 6$0^{\circ}C$ for 72hours, and crushed into fine particles those were used as fillers for 7 experimental composites. Monomer was a 3 : 1 mixture of Bis-GMA and TEGDMA containing 0.2% tertiary amine and 0.4% camphoroquinone for light curability. A ratio for mixing the monomer and filler was 75% and 25% respectively. Seven experimental composites was classified with the concentration of silane treated, and the specimen number for each test was 10. Specimens with 6mm diameter and 3mm height dimension for measuring the diametral tensile strength were destroyed with 1mm/min cross-head speed on Instron universal testing machine (No. 4467, USA). Shear bond strength was measured on the specimens bonded to bovine enamel etched with 37% phosphoric acid solution for 1 minute Fractured surfaces were observed by SEM (Hitachi S-3200, Japan) among that of the highest values measured from each groups. Following results were obtained: 1. Experimental composites containing silanized filter showed the significantly higher diametral tensile strength and shear bond strength than the composites containing un-silanized fillers(Group1) (p<0.05). 2. In silanized filler composite resins(Group 2~7), Diametral tensile strength of Group 3 showed the significantly higher than that of Group 2 and Group 6(p<0.05). 3. Shear bond strength was higher in Group 3 than that of Group 7 (p<0.05)in silanized fillers composite resins. 4. Fracture surface was formed in resin matrixes on the specimens from composites containing the fillers treated with 0.5% 1.0%, and 1.5% silane. These results mean that the optimal silane concentrations are exist for each fillet with its size and surface area, and that 1.0% is a optimal value for concentration to coat the 25$\mu\textrm{m}$ filler with silane.

  • PDF

중합방법에 따른 여러 이중중합 레진 시멘트의 기계적 성질 평가 (Evaluation of mechanical properties of several dual-cure resin cements by curing modes)

  • 김수연;박세희;김진우;조경모
    • 구강회복응용과학지
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • 목적: 중합방법 및 측정시기에 따른 여러 이중중합 레진 시멘트의 기계적 성질인 압축강도와 간접인장강도를 비교 평가하는 것이다. 연구 재료 및 방법: 1개의 레진강화형 글래스아이오노머 시멘트인 FujiCEM 2, 2개의 전통적인 이중중합 레진 시멘트인 RelyX ARC와 Multilink N, 2개의 이중중합 자가접착 레진 시멘트인 RelyX U200과 G-CEM LinkAce를 사용하였다. 제조사의 지시에 따라 시멘트를 혼합하여 압축강도와 간접인장강도 측정을 위한 시편을 제작하였다. 중합방법 및 측정시기의 영향을 평가하기 위해 시멘트에 따라 4가지 실험 조건으로 나눴고, 만능시험기로 압축강도와 간접인장강도 측정하였다. 각각의 강도 값을 계산 후 통계처리 하였다. 결과: 압축강도에서는 RelyX ARC의 광중합과 Multilink N의 광중합, 간접인장강도에서는 RelyX ARC의 광중합을 제외하고 모든 중합방법에서 24시간 뒤 측정된 강도가 즉시 측정한 강도보다 더 높은 값을 보여주었다. FujiCEM 2는 시멘트간 비교에서 가장 낮은 강도 값을 보였다(P < 0.05). 결론: 치과용 시멘트 중에서 최근 출시된 이중중합 자가접착 레진 시멘트는 기존의 레진 시멘트와 비교시 제품별로 차이가 있었으나, 압축강도와 간접인장강도에서는 유의한 차이를 보이지 않았다.

Hybrid Glass Ionomer cement의 비커스경도와 간접인장강도에 관한 연구 (A STUDY ON THE VICKER'S HARDNESS AND DIAMETRAL TENSILE STRENGTH OF HYBRID GLASS IONOMER)

  • 권균원;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제22권2호
    • /
    • pp.505-518
    • /
    • 1997
  • The objective of this investigation was to compare the effects of water storage on the aspect of hardness and diametral tensile strengths of four hybrid glass ionomer cements(two compomers and two resin-reinforced glass ionomers) with a resin composite material. One composite resin(Degufill Ultra), two compomers(Dyract, Compoglass Cavifil), and two resin-reinforced glass ionomers(Fuji Duet, Vitremer) were used in this study. Cylindrical specimens were prepared and stored at $36{\pm}1^{\circ}C$ in distilled water for 10 minutes after set, and then tested on an Instron testing machine(No.4467) at 1.0 mm/min displacement rate. Vicker's hardness and diametral tensile strengths as time elapsed were measured after aging in water for 10 minutes, 1 hour, 3 hours, 1 day, 3 days, 5 days and 7 days at $36{\pm}1^{\circ}C$. During the test of diametral tensile strength, stress-strain curves were obtained, from which the compressive modulus were calculated and compared. The structure of four set glass ionomer cement mass was observed on SEM(Hitachi, S-2300) after being etched with 9.6% hydrofluoric acid for 1 minute. The results were as follows; 1. The hardness of the experimental group(compomer and the resin reinforced glass ionomer cement) did not exceed the value of control group(Degufill Ultra). 2. Vicker's hardness of the Fuji Duet tended to increase succeedingly, Dyract was decreased after 3 hours in water, and Vitremer was the lowest. 3. The control group(Degufill Ultra) presented progressively on increased diametral tensile strength with time, Fuji Duet were decreased after 3 days, Compoglass Cavifil and Vitremer were decreased after 5 days in water storage. 4. Compressive modulus of the control group(Degufill Ultra) and Dyract were increased sharply timely, Fuji Duet and Vitremer were increased smoothly by lapse of time in water. Fuji Duet were stronger than Vitremer. On the other hand, Vitremer exhibited the lowest toughness. 5. The microstructure of compomer was similar with that of the composite resin(Degufill Ultra), and the fillers in resin-reinforced glass ionomer cements were noticed. It can be concluded that mechanical properties of hybrid glass ionomer cements is weaker than composite resin, and that the compomers or the resin-reinforced glass ionomers can not substitute the composite resins. A plenty of considerations should be done on the application of them to the area under the loading and high wear has a little adverse effect on the mechanical properties on the water storage for 7 days. The further research should be needed to confirm the advantage of the compomer.

  • PDF

세로머, 세라믹 및 복합레진의 기계적 성질의 비교에 관한 연구 (A COMPARATIVE STUDY ON THE MECHANICAL PROPERTIES OF CEROMER, CERAMIC AND INDIRECT COMPOSITE RESIN)

  • 백정화;박일윤;황호길
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.233-239
    • /
    • 1999
  • Recently, a second generation composite resin system(ceromer) was introduced with significantly improved mechanical properties. The purpose of this study was to compare a ceromer with the other restorative materials and to assess its clinical usefulness. In this study, we used four restorative materials : amalgam (BESTALOY$^{(R)}$), indirect composite resin (Clearfil CR Inlay$^{(R)}$), ceromer (Targis$^{(R)}$) and ceramic (Vintage$^{(R)}$). And then we devided into four groups. The materials of each group were as follows : Amalgam group : BESTALOY$^{(R)}$ (Dong Myung Dental Industrial Co.) Composite Resin group : Clearfil CR Inlay$^{(R)}$ (Kuraray) Ceromer group : Targis$^{(R)}$ Dentin (Ivoclar-Vivadent) Ceramic group : Vintage$^{(R)}$ (Shofu Inc.) According to the above classification, we made samples through the polymerization of BESTALOY$^{(R)}$, Clearfil CR Inlay$^{(R)}$ and Targis$^{(R)}$ with separable cylindrical metal mold and firing of Vintage$^{(R)}$ in a investment mold. And then, we measured and compared the value of compressive strength, diametral tensile strength and Vicker's microhardness of each sample. The results were as follows : 1. Amalgam showed the highest value of compressive strength (390.37${\pm}$42.22MPa) and the value of ceromer was somewhere between ceramic and indirect composite resin. There were significant differences among the experimental groups(p<0.001). 2. Indirect composite resin showed the highest value of diametral tensile strength (74.21${\pm}$15.33MPa) and there was no significant difference with ceromer. Ceromer was higher diametral tensile strength than amalgam and ceramic (p<0.001). 3. Ceramic showed the highest value of microhardness (538.44${\pm}$37.38Hv) and the value of ceromer was somewhere between ceramic and indirect composite resin. There were significant differences among the experimental groups (p<0.001).

  • PDF

Camphoroquinone이 복합레진의 특성에 미치는 영향 (INFLUENCES OF CAMPHOROQUINONE ON THE PROPERTIES OF COMPOSITES)

  • 탁흥수;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제26권1호
    • /
    • pp.41-50
    • /
    • 2001
  • The purpose of this study was to examine the influences of camphoroquinone on the properties of five experimental composites. The contents of camphoroquinone were varied as 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%, with silanized filler 75% and tertiary amine 0.2%. Five kinds of experimental composites were prepared, and diametral tensile strength, shear bond strength, depth of cure and yellowish discoloration were tested as a measurement. Specimen numbers of 10 were applied to all test items and experimental groups. Specimens for testing the diametral tensile strengths with internal diameter of 6mm in diameter and 3mm in height were filled with 5 experimental composites which were crushed with 1mm/min cross-head speed on Instron universal testing machine (Model No. 4467). Shear bond strength was measured on specimens attached to bovine teeth enamel etched with 37% phosphoric acid. Depth of cure was measured by the measurement of height of specimens which were removed the un-polymerized portion with acetone. Yellowness measurements were made by chromometer(Minolta Co. Japan) using L$^*$a$^*$b$^*$ values. ANOVA and Multiple range tests were used analyzed data with confidence level at 95%. The mean value of the shear bond strengths ranged from 31.03MPa to 39.49MPa. Following results were obtained ; 1. Diametral tensile strength was highest in experimental group 3, then was not affected by the contents of camphoroquinone ($r^2$=0.0422). 2. Composite resins containing 0.4% camphoroquinone showed the highest shear bond strength, but there was no statistical significance (p=0.3718). 3. Camphoroquinone reduces the depth of cure in the composite resins (p=0.0004, $r^2$=0.9483). 4. Camphoroquinone made the composites yellowish ($r^2$=0.9815). These results mean that increased content of camphoroquinone reduces the depth of cure, and that camphoroquinone make composites yellowish.

  • PDF