• Title/Summary/Keyword: Diameter at breast height

Search Result 247, Processing Time 0.037 seconds

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

Assessment on the Applicability of a Handheld LiDAR for Measuring the Geometric Structures of Forest Trees (산림지역 수목의 기하학적 구조 측정을 위한 휴대용 라이다 장비의 활용성 평가)

  • CHOI, Seung-Woon;KIM, Tae-Geun;KIM, Jong-Pil;KIM, Sung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.48-58
    • /
    • 2022
  • This study tried to assess the applicability of a hand-held LiDAR for measuring the geometric structures of forest trees including diameters at a breast height(DBH) and tree height(H). A traditional method using tapelines was conducted to analyze the accuracy of the LiDAR instrument in the Taebaeksan national park in South Korea. Four statistical indices which are bias, root mean square error, mean absolute error, and correlation coefficient were employed to compare the measurements by the LiDAR instrument and traditional method. The DBHs from the LiDAR were very similar to those from the traditional method. And it indicated that the LiDAR is sufficient to be a alternative of a traditional method. However, there was a limitation in assessing the accuracy of LiDAR for measuring tree height by comparing the measurements by observer's eyes since they included different error sources. Further study is needed to assess the accuracy of LiDAR instrument for tree height through more reliable measurements.

A Study on the Measures to Improve the Assessment Method for Loss Compensation of Landscape Plants (조경수의 손실보상 감정평가 개선에 관한 연구)

  • Park, Yool-Jin;Lim, Yoen-Hong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.19-31
    • /
    • 2017
  • Plants are the basis for sustainable green growth, and the value of existence and importance of trees including landscape Plants can't be emphasized enough. Therefore, they are precious living things thriving in all sorts of public services, and continuous civil complaints for justifiable compensation of landscape Plants are filed. First, the standard formula of planting intervals according to production target specifications is calculated using root-collar caliper and diameter at breast height, and apply (1) standard medium sized trees which have not yet reached commercialization [deciduous tree production goal (R(B) less than 6cm]= (target standard)= [target standard $R(cm){\times}15{\times}0.7$]. (2) In case of commercialization(R6~R10)= [target standard $R(cm){\times}15{\pm}5%$], (3) In case of more than R12= [target standard $R(cm){\times}15{\times}130%$] shall be applied. In case of using diameter at breast height (4) In case of commercialization(B6~B10)= [target standard $B(cm){\times}20{\times}15{\pm}5%$], (5) In case of more than B12= [target standard $B(cm){\times}20{\times}130%$] shall be applied. Second, appraisal methods based on tree classification of compensation for loss are classified according to planted locations. (1) landscape trees within a house=[price of arrival at the site+planting cost], (2) landscape trees in places such as arboretum=[management technology of tress + relocation expenses considering scarcity of the trees (3) landscape trees in a place of loads= [landscape tree production cost + work out added price. In case of producted landscape threes (4) landscape trees ready to be commercialized as sales loss.

Basal Area-Stump Diameter Models for Tectona grandis Linn. F. Stands in Omo Forest Reserve, Nigeria

  • Chukwu, Onyekachi;Osho, Johnson S.A.
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.2
    • /
    • pp.119-125
    • /
    • 2018
  • The tropical forests in developing countries are faced with the problem of illegal exploitation of trees. However, dearth of empirical means of expressing the dimensions, structure, quality and quantity of a removed tree has imped conviction of offenders. This study aimed at developing a model that can effectively estimate individual tree basal area (BA) from stump diameter (Ds) for Tectona grandis stands in Omo Forest Reserve, Nigeria, for timber valuation in case of illegal felling. Thirty-six $25m{\times}25m$ temporary sample plots (TSPs) were laid randomly in six age strata; 26, 23, 22, 16, 14, and 12 years specifically. BA, Ds and diameter at breast height were measured in all living T. grandis trees within the 36 TSPs. Least square method was used to convert the counted stumps into harvested stem cross-sectional areas. Six basal area models were fitted and evaluated. The BA-Ds relationship was best described by power model which gave least values of Root mean square error (0.0048), prediction error sum of squares (0.0325) and Akaike information criterion (-15391) with a high adjusted coefficient of determination (0.921). This study revealed that basal area estimation was realistic even when the only information available was stump diameter. The power model was validated using independent data obtained from additional plots and was found to be appropriate for estimating the basal area of Tectona grandis stands in Omo Forest Reserve, Nigeria.

Assessment of Site Environmental Factors on the Structure of Forest Vegetation in Naejang-san National Park Using Canonical Correlation Analysis (정준상관분석을 통한 내장산국립공원 산림식생구조의 입지환경 평가)

  • Kim, Tae-Geun;Cho, Young-Hwan;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.561-569
    • /
    • 2013
  • This study examines locational environment factors that may affect the vegetation structure in the forests of Naejang National Park. To that end, we selected LAI (Leaf Area Index), diameter at breast height, and tree height as structural variables as well as altitude above sea level, gradient, slope direction, soil moisture, topographic location, and amount of solar radiation as locational environment factors, using the method of canonical correlation analysis in order to find out correlation between them. As to the simple correlation between the locational environment factors and structural variables, the correlation coefficient was relatively low (0.6). The values of LAI, measured along the ridge with higher altitudes, decreased as the soil moisture and solar radiation increased. However, LAI increased as the gradient increased and the slope direction faced the north (farther from the east). In respect of the diameter at breast height, the diameter decreased as the altitude and gradient increased. But the diameter increased as the moisture and solar radiation increased. The tree height decreased as the moisture increased and the site was closer to the ridge. These various correlations show a variety of locational environment factors in the national park, implying that the structural variables are affected by complex locational environment factors. This study conducted a canonical correlation analysis on locational environment factors which may affect the vegetation structure, and the result showed that LAI increased and tree height & diameter at breast height decreased as the solar radiation & moisture decreased and altitude increased. Although more factors that may affect vegetation structure (e.g. climate) should be taken into account, this study is significant in that the vegetation structure, which can adapt to more unfavorable conditions in terms of solar radiation, moisture, and higher altitudes, could be inferred in a statistical way. The results of this study, especially the locational environment factors based on DEM, can be used for assessing diversity of vegetation structure in a forest and for monitoring the structure in a national park on a regular basis so as to establish more effective maintenance plans of a park.

Growth of Chaga Mushroom (Inonotus obliquus) on Betula platyphylla var. japonica (자작나무시루뻔버섯(차가버섯)을 접종한 자작나무로부터 버섯의 생장)

  • Ka, Kang-Hyeon;Jeon, Sung-Min;Park, Hyun;Lee, Bong-Hun;Ryu, Sung-Ryul
    • The Korean Journal of Mycology
    • /
    • v.45 no.3
    • /
    • pp.241-245
    • /
    • 2017
  • Chaga mushroom (Inonotus obliquus), which has invaluable medicinal uses, grows only on living trees. To date, it is still harvested from its natural habitat and is not cultivated artificially. We artificially cultivated chaga mushrooms by inoculating its sawdust spawns on Betula platyphylla var. japonica in 2007, and monitored mushroom growth on the inoculated trees for 9 years. The mushrooms grew less than 1 cm per year, with the largest mushroom growing up to 9 cm in the 9 years of study. There was no difference in the growth (diameter at breast height) of trees with viable and non-viable I. obliquus. In conclusion, artificial cultivation of chaga mushroom was successful. Our findings suggest that selection of large B. platyphylla var. japonica as host tree could lead to better I. obliquus productivity. Further improvements of the method are needed to increase the success rate of I. obliquus inoculation.

Dry Season Evaporation From Pine Forest Stand In The Middle Mountains Of Nepal

  • Gnawali, Kapil;Jun, KyungSoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.330-330
    • /
    • 2016
  • The quantification of dry season evaporation in regions, where the magnitude of dry season flows is key to the regional water supply, is essential for good water management. Also, tree transpiration has a significant role in the water balance of a catchment whenever it is tree populated, especially in water limited environments. Such is the case in the Middle Mountains of Nepal where dry season flows play a significant role in downstream water provisioning and their proper functioning is key to the welfare of millions of people. This research seeks to study the transpiration of a pine forest stand in the Jikhu Khola Watershed in the Middle Mountains of Nepal. To the author's knowledge, no single study has been made so far to estimate the dry season evaporation from the planted forest stand in the Middle Mountains of Nepal. The study was carried out in planted pine forest embedded within the Jikhu Khola Catchment. Field campaigns of sap flow measurements were carried out from September, 2010 to February, 2011 in the selected plot of 15*15m dimension, to characterize dry season evaporation. This was done by measuring sap fluxes and sapwood areas over the six trees of different Diameter at Breast Height (DBH) classes. The sap flux was assessed using Granier's thermal dissipation probe (TDP) technique while sapwood area was determined using several incremental core(s) taken with a Pressler borer and immediately dyeing with methyl orange for estimating the actual depth of sapwood area. Transpiration of the plot was estimated by considering the contribution of each tree class. For this purpose, sap flux density, sapwood area and the proportion of total canopy area were determined for each tree class of the selected plot. From these data, hourly and diurnal transpiration rates for the plot were calculated for experimental period. Finally, Cienciala model was parameterized using the data recorded by the ADAS and other terrain data collected in the field. The calibrated model allowed the extrapolation of Sap flux density (v) over a six month period, from September 2010 to February 2011. The model given sap flux density was validated with the measured sap flux density from Grainier method.

  • PDF

Application of Object Modeling and AR for Forest Field Investigation (산림 현장조사를 위한 객체 모델링과 AR의 활용)

  • Park, Joon-Kyu;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.411-416
    • /
    • 2020
  • Field investigations of forests are carried out by writing measured data by hand, and it is a hassle to reorganize the results after a field survey. In this study, a method using object modeling and augmented reality (AR) was applied in a test forest to increase the efficiency of a field investigations. Using a 3D laser scanner, data on were acquired 387 trees within an area of 1 ha at the study site. The coordinates, height, and diameter were calculated through object extraction and modeling of a tree. The proposed can reduce the time required to acquire data in the field and can be used as basic data for building related systems. In addition, the modeling results of trees and a survey using GNSS and AR techniques can be used check coordinates, labor, and attribute information, such as the chest height diameter of the trees being surveyed in the field. The shortcomings of the survey method could be improved. In the future, the method could greatly improve the efficiency of tree surveys and monitoring by reducing the manpower and time required for field surveys.

Implication of Self-thinning in Salix Communities on Riverine Wetland Restoration

  • Kim, Jae-Geun;Nam, Jong-Min;Han, Mie-Hie
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.251-255
    • /
    • 2007
  • Self-thinning was measured in Salix communities on Bam Island in Seoul at various age stages. $D^2H$ was used to estimate tree biomass, where D is stem diameter at breast height or 10 cm height for plants with height <1.5 m, and H is height. A log-log plot of density versus $D^2H$ and correlation analysis indicated a significant relationship between density and biomass with equation 'log $D^2H$ = -1.27 log N + 7.06'. This indicates that self-thinning affects biomass in the Salix community with -1.27 as the thinning coefficient. If we assume a thinning exponent -3/2, then the allometric coefficient of the equation, log w = a log $D^2H$ + b, is 1.18. This is much higher than that for any other species studied in Korea. There were statistically significant relationships between age and density and between age and basal area and these relationships suggest guidelines for transplantation of willows and for the assessment of Salix community restoration projects in riverine wetlands based on standard density, basal area, and age. The results of this study may also increase understanding of succession processes in Salix community restoration in riverine wetlands.

Above- and Below-ground Biomass and Energy Content of Quercus mongolica (신갈나무의 지상부와 지하부 바이오매스 및 에너지량)

  • Kwon, Ki-Cheol;Lee, Don-Koo
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Quercus mongolica is the most common hardwood species distributed in Korea. This study was conducted to investigate the biomass and energy content of the belowground biomass of Q. mongolica and to obtain the regression equation for estimating root biomass using the tree height and diameter at breast height (DBH). A total of 18 sample trees ranging 20 to 60 year-old were selected in the study sites. Tree height, DBH, age, and weight of stemwood, sapwood, heartwood, stembark, branch, leaf, and root were measured for total biomass. The highly positive correlation was shown between the biomass of most of variables of aboveground components and root biomass. The regression equation of the aboveground total biomass was $log\;W_A\;=\;1.469\;+\;0.992\;log\;D^2H\;(R^2 =0.99)$. The regression equation of the belowground biomass was $log\;W_R\;=\;1.527\;+\;0.808\;log\;D^2H\;(R^2\;=\;0.97)$. The mean energy contents of sapwood, heartwood, bark, leaf, and root were 19,594 J/g DW, 19,571 J/g DW, 19,999 J/g DW, 20,664 J/g DW, and 19,273 J/g DW, respectively. The results obtained from this study can be used to estimate biomass and energy content of belowground using easily measurable variables such as DBH and tree height ranging from 20 to 60-year-old Q. mongolica stands.

  • PDF