• 제목/요약/키워드: Diameter Ratio

검색결과 3,096건 처리시간 0.03초

Fabrication of Injection Molded Fe-50%Ni Sintered Bodies (사출성형된 Fe-50%Ni 소결체의 제조)

  • Kim Ki-Hyun;Yoon Hyeong-Chul;Choi Chul-Jin;Lee Byong-Taek
    • Journal of Powder Materials
    • /
    • 제11권6호
    • /
    • pp.472-476
    • /
    • 2004
  • The Fe-Ni compact bodies were fabricated using Fe-Ni mixed powders with 50 nm in diameter by injection molding process. The relationship between microstructure and material properties was characterized with respect to the volume ratio of powder/binder and sintering temperature with SEM and TEM. In the compact body having the volume percent ratio of 45(Fe-Ni) : 55(binder), which was sintered at $900^{\circ}C$ the values of relative density and hardness were low about 97.7% and 277.1 Hv, respectively. Using the composition of 50(Fe Ni) : 50(binder) and sintered at $900^{\circ}C$, the values of relative density and hardness were 98.5%, 294.4 Hv, respec-tively. The grain size of sintered bodies strongly depended on the sintering temperature. In both samples sintered at $600^{\circ}C$ and $900^{\circ}C$, the average grain sizes were about 150 nm and 500 nm in diameter, respectively.

A study on the extrusion forming characteristics of construction materials with die and process parameters (금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF

Peel-tension Fatigue Strength of Mechanical Press Joints of Cold Rolled Steel Sheet (냉간 압연강 판재 기계적 접합부의 인장-박리 피로 강도)

  • Lee, Man-Suk;Park, Jong-Min;Kim, Taek-Young;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • 제27권5호
    • /
    • pp.42-48
    • /
    • 2012
  • Peel-tension fatigue experiments were conducted for investigating on fatigue strength of mechanical press joints of SPCC steel sheet used in the field of the automobile industry. In addition, finite element method analysis on the peel-tension specimen was conducted using HyperMesh and ABAQUS softwares. The cold rolled mild steel was used to join the T-shaped peel-tension specimen with a button diameter of 5.4 mm and a punch diameter of 8.3 mm. The fatigue limit load amplitude was found to be 112.4 N at the number of cycles 106, indicating that the ratio of fatigue limit load to static peel-tension strength was about 8%. This value suggests that the mechanical press joint is highly vulnerable to peel-tension load rather than to tensile-shear load, considering that the ratio of fatigue limit load to static tensile-shear strength was about 43%. Fatigue failure mode was found to be interface-failure mode.

Development of a Ejection Gas Generator for precluding Erosive Burning by using Bundle Cylindrical Grains (침식연소가 방지되는 사출용 다발 원통형 그레인 가스발생기 개발)

  • Oh, Seok-Jin;Cha, Hong-Seok;Jang, Seung-Gyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.432-439
    • /
    • 2011
  • An achieving method of highly progressive pressure gradient is presented to enhance the missile ejection system's performance by using a gas generator in the condition of preventing erosive burning. To obtain and confirm a stable burning, a ground burning test was performed to evaluate the new methods of a radial-hole and a multi-row propellant grain. The test results show that a radial-hole grain takes good effect on erosive burning and not on ejection performance. On the other hand, a multi-row grain which reduces the legnth-to-diameter ratio(L/D) of grain is very effective to prevent the erosive burning and to enhance the ejection performance simultaneously.

  • PDF

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • 제13권4호
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

The Causal Relationship of the Hydrocephalus in Patients with Aneurysmal Subarachnoid Hemorrhage

  • Shin, Tae-Sob;Jung, Chul-Ku;Kim, Hyun-Woo;Park, Keung-Suk;Kim, Jae-Myung
    • Journal of Korean Neurosurgical Society
    • /
    • 제42권3호
    • /
    • pp.173-178
    • /
    • 2007
  • Objective : Hydrocephalus is one of the major complications following spontaneous subarachnoid hemorrhage (SAH). However, the risk factors of the hydrocephalus after SAH are not still well known. This study was focused on verification of the causal relationships between the development of hydrocephalus and SAH. Methods : The patients who developed hydrocephalus after rupture of aneurysms were studied. To obtain prognostic factors regarding to hydrocephalus, several parameters such as age, sex, hypertension, location of aneurysm, existence of intraventricular hemorrhage (IVH) and intracerebral hemorrhage (ICH), Glasgow coma scale (GCS), Hunt-Hess SAH classification & Fisher Grade on admission and the ratio of frontal harn of lateral ventricle diameter to skull inner table diameter at this level (FH/ID) were studied retrospectively. Results : The development of hydrocephalus following SAH is multifactorial. The age, IVH, FH/ID ratio were related to hydrocephalus in analysis. There is a low clinical correlation between sex, hypertension, location of aneurysm, existence of ICH, GCS, Hunt-Hess SAH classification, Fisher Grade on admission and hydrocephalus. Conclusion : Knowledge on risk factors related to the occurrence of hydrocephalus may help guide neurosurgeons in the long-term care of patients who have experienced aneurysmal SAH.

An Experimental Study on Heat Transfer of Semi-cylindrical Surface by Impinging Water Jet (충돌수분류(衝突水噴流)에 의한 Semi-cylinder면(面)에서의 열전달(熱傳達)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Ohm, K.C.;Choi, G.G.;Seo, J.Y.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • 제17권6호
    • /
    • pp.708-716
    • /
    • 1988
  • Local heat transfer coefficients were measured on semi-cylinders on which a circular water jet impinged in crossflow. The ratio of the semi-cylinder's diameter and the nozzle outlet diameter were varied parametrically, as were the Reynolds number and the supplementary water heights. The measurements showed that the circumferential distribution of the heat transfer coefficient peaked at the stagnation point. For a fixed supplementary water height, the peak heat transfer coefficient was not depend on the curvature of test specimen(d/D). Optimum height of supplementary water which brought about the augmentation of heat transfer at the stagnation point was S/D=1. The Nusselt number decreased as the circumferential distance or angle increased. The circumferential distribution of dimensionless heat transfer (Nu/Nus) was independent of d/D ($d/D{\geq}8.33$), but for the d/D<8.33, it was depended on d/D. At a fixed angle of specimen, dimensionless heat transfer (Nu/Nus) decreased as the ratio d/D increased. The extent of the decrease between d/D=6.67 and 8.33 was markedly greater than that between d/D=8.33 and 10, or d/D=10 and 11.67.

  • PDF

Steady Characteristic Change of Hydraulic Control Orifice according to Opening and Configuration Parameters (수력제어용 오리피스의 개도 및 형상 변수에 따른 정상저항 특성의 변화)

  • Kim, Sang-Min;Kim, Geon-Woong;Ko, Tae-Ho;Kim, Hyung-Min;Yoon, Woo-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.329-334
    • /
    • 2009
  • The Study of steady performance of orifice must be precede before study of dynamic characteristics with configuration change. So, orifice performance with change of diameter ratio, thickness, expansion and angle predicted by CFD. The analysis algorithm is SIMPLEC. And PRESTO, QUICK scheme is used for dicretization. The $k-{\omega}$ STS turbulent model also used. The discharge coefficient is rapidly increased with increasing of diameter ratio and slowly decreased after rapidly increasing with orifice thicken. In case of expansion angle, the discharge coefficient is the smallest at $45^{\circ}$ of the angle.

  • PDF

Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air (희석된 동축공기 수소 난류확산화염의 화염 길이 스케일링)

  • Hwang, Jeong-Jae;Oh, Jeong-Seog;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.242-245
    • /
    • 2009
  • The effect of fuel composition on flame length was studied in a non-premixed turbulent diluted hydrogen jet with coaxial air. The observed flame length was expressed as a function of the ratio of coaxial air to fuel jet velocity and compared with a theoretical prediction based on the velocity ratio. Four cases of fuel mixed by volume were determined. In the present study, we derived a scaling correlation for predicting the flame length in a simple jet with coaxial air using the effective jet diameter in the near-field concept. The experimental results showed that visible flame length had a good relation with the theoretical prediction. The scaling analysis is also valid for diluted hydrogen jet flames with varied fuel composition.

  • PDF

Exergetic analysis for optimization of a rotating equilateral triangular cooling channel with staggered square ribs

  • Moon, Mi-Ae;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.229-236
    • /
    • 2016
  • Exergetic analysis was introduced in optimization of a rotating equilateral triangular internal cooling channel with staggered square ribs to maximize the net exergy gain. The objective function was defined as the net exergy gain considering the exergy gain by heat transfer and exergy losses by friction and heat transfer process. The flow field and heat transfer in the channel were analysed using three-dimensional Reynolds-averaged Navier-Stokes equations under the uniform temperature condition. Shear stress transport turbulence model has been selected as a turbulence closure through the turbulence model test. Computational results for the area-averaged Nusselt number were validated compared to the experimental data. Three design variables, i.e., the angle of rib, the rib pitch-to-hydraulic diameter ratio and the rib width-to-hydraulic diameter ratio, were selected for the optimization. The optimization was performed at Reynolds number, 20,000. Twenty-two design points were selected by Latin hypercube sampling, and the values of the objective function were evaluated by the RANS analysis at these points. Through optimization, the objective function value was improved by 22.6% compared to that of the reference geometry. Effects of the Reynolds number, rotation number, and buoyancy parameter on the heat transfer performance of the optimum design were also discussed.