• Title/Summary/Keyword: Diameter Ratio

Search Result 3,096, Processing Time 0.037 seconds

Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant (정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석)

  • Song K. S.;Oh S. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132-137
    • /
    • 2001
  • We used In-line orifice mixer for efficient chemicals mixing in water treatment. The method of using In-line orifice mixer has been already proved the improvement of water treatment efficiency. Code of computational fluid dynamics for numerical analysis was performed using FLUENT, a commercial code. As variable for exactly standardizing, a proper ratio between an outer diameter of deflector and a diameter of pipe, the distance between deflector and orifice, a determination of orifice diameter fur an optimal mixing, a distance between injection nozzle's position and cone, Numerical study has been performed for optimal standard and analyzed flow field on a basis of turbulent intensity in an orifice downstream.

  • PDF

Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation

  • Farazin, Ashkan;Mohammadimehr, Mehdi
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 2020
  • This research investigates the effect of single walled carbon nanotubes (SWCNTs) dimensions in terms of diameter on the mechanical properties (longitudinal and transverse Young's modulus) of the simulated nanocomposites by molecular dynamics (MDs) method. MDs utilized to create nanocomposite models consisting of five case studies of SWCNTs with different chiralities (5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) as the reinforcement and using polymethyl methacrylate (PMMA) as the common matrix. The results show that with increasing of SWCNTs diameter, the mechanical and physical properties increase. It is important that with the increasing of SWCNTs diameter, density, longitudinal and transverse Young's modulus, shear modulus, poisson's ratio, and bulk modulus of simulated nanocomposite from (5, 0) to (25, 0) approximately becomes 1.54, 3, 2, 1.43, 1.11 and 1.75 times more than (5, 0), respectively. Then to validate the results, the stiffness matrix is obtained by Materials studio software.

NOx Emission Characteristics in Parametrically Varied Methane-Air Coflow Flames (메탄 분류 화염에서의 연소 조건에 따른 NOx 배출 특성)

  • Lee, Sang-Han;Oh, Chang-Bo;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.35-44
    • /
    • 2000
  • It was numerically studied that NOx emission characteristics of confined $CH_{4}$ jet flames with the variation of the diameter of inner fuel nozzle, the flow rate of $CH_{4}$ and equivalence ratio. Parabolic type equations were adopted in the calculation and GRI-2.1I mechanism was used for the chemical reaction. NOx emission index (EINOx) was introduced to evaluate NOx emission quantitatively in parametrically varied flames and the contribution of Thermal and Prompt NO mechanism was discussed. The results showed that Total EINOx varied sensitively with the variation of the flow rate of$CH_{4}$ but it was not sensitive to the variation of the diameter of inner fuel nozzle. Thermal EINOx showed the similar tendency to total EINOx and Prompt EINOx showed insensitivity to the variation of the diameter of inner fuel nozzle and the flow rate of $CH_{4}$.

  • PDF

A Case Study on the Analysis of Characteristics of Marine HVAC Duct - For the Development of Maintenance Robot's Movement Algorithm - (선박 공조닥트의 특성분석에 관한 사례 연구 - 유지관리용 로봇의 이동 알고리즘 개발을 위한 분석 -)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2006
  • This study is focused on the analysis of the characteristics of marine HVAC duct. These results will be applied to develope a robot which is for maintaining a cabin comfort, convenience and healthy through HVAC duct. The followings are the results of this study. (1) The evaluated items which proposed by at the view point of robot's function can be adapted to other vessels for the same purpose, (2) For the case of round type duct. the maximized conditions which robot has to have are straight length of 40.152mm, inclination of $45^{\circ}$. horizontal bending of $90^{\circ}$. increasing diameter of 1.28 times, and 0.625 times decreasing diameter in branch. (3) For the case of rectangular type duct. the maximized conditions are straight length of 15.987mm. aspect ratio of 4.17:1, inclination of $18.92^{\circ}$. horizontal bending of $90^{\circ}$, and 0.65 times decreasing diameter in branch.

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

A study on Discharge Characteristics of Rotating Discharge Hole with inlet edge shape (입구 형상에 따른 회전 송출공의 송출특성 연구)

  • Kang, Se-Won;Ha, Kyung-Pyo;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.746-752
    • /
    • 2000
  • A study on discharge characteristics of a rotating discharge hole is very important to enhance the performance of an induction motor which have external forced cooling system. The discharge characteristics of rotating discharge holes are influenced by rotating speed, length-to-diameter ratio, inlet shape of rotor holes, etc. An experimental study on the effect of chamfered inlet edge of rotor inlet part with various depth-to-diameter and inlet chamfered edge angle is conducted. Depth-to-diameter ratios range from 0 to 0.5 and inlet chamfered edge angle range from 0 to 60. As a result, there is an optimal design point of inlet chamfered edge depth. And the inlet edge angle far maximum discharge coefficient is influenced mainly by the rotating speed of discharge holes.

  • PDF

Synthesis and Characterization of Glold Nanofluid Prepared by the Solution Plasma Processing (용액 플라즈마 공정을 이용하여 제조된 금 나노유체의 특성평가)

  • Heo, Yong-Kang;Lee, Sang-Yul
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.342-346
    • /
    • 2010
  • In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with $64.0{\pm}42.1\;nm{\sim}18.10{\pm}5.0\;nm$ in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of $18.10\;{\pm}\;5.0\;nm$ in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.

Influence of Spring on The Absorption Performance of a Vertical Absorber Tube (수직 흡수전열관의 흡수성능에 미치는 스프링의 영향)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.825-832
    • /
    • 2002
  • The present study investigated the enhancement of the absorption performance by the spring wrapped around the outer surface of the vertical falling film absorber tube. Heat and mass transfer enhancements were experimentally investigated, and flow visualization was performed to observe the wettability and flow pattern of the solution. The key experimental parameters were spring diameter (0.5, 1.0 mm) and spring pitch (1, 3, 10 mm), film Reynolds number (50~150), and concentration of LiBr-$H_2O$ solution (55, 60, 65 wt%). As the spring diameter was increased, the absorption mass flux, Sherwood number, Nusselt number, heat flux, and heat transfer coefficient were increased The Nusselt and Sherwood numbers showed the maximum at the spring pitch of 3mm, and the ratio of pitch to diameter of approximately 3 and 6 for the spring diamter of 0.5 mm, respectively.

Heat Transfer Coefficients of Concentric Annuli for Testing Heat Transfer Characteristics of Alternative Refrigerants in Tubes (대체냉매 관내 열전달특성 시험을 위한 동심이중원관의 환상유로의 열전달계수)

  • KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.63-67
    • /
    • 2021
  • Accurate measurements of the heat transfer coefficients of concentric annular space for the test section is important to measure the tube-side heat transfer coefficients of working fluids. This paper presents the annular side heat transfer coefficients of concentric annuli with variation of tube diameter ratios using Wilson plot method. The test facility has a straight, horizontal test section with an active length of 3.0 m. Inner/outer diameters of test tubes are 7.0/7.5 and 8.0/8.56 mm, respectively. An outer diameter of annulus side is 16.0 mm. The test results show that convective heat transfer coefficients in annuli increase with annular diameter ratio. The correlations for convective heat transfer coefficients in annuli are also developed.

Nail Withdrawal Behavior for Domestic Small Diameter Logs

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.104-108
    • /
    • 2002
  • Nail withdrawal tests were conducted on clear wood of domestic small diameter logs. Nails were driven into the cross and longitudinal sections of each specimen, then nail withdrawal tests were performed. Nail withdrawal loads are strongly dependent on the direction of nail positions. The average load values for the nail withdrawal both in cross section and longitudinal section are higher in high specific gravity (SG) wood of sawtooth oak (Quercus acutissima Carr.) than those in low SG wood of Korean red pine (Pinus densiflora Sieb. et Zucc.) and pitch pine (Pinus rigida Mill.). The average ratio of the nail withdrawal loads for side-grain and end-grain are higher in the low SG wood than that in the high SG of wood. Both linear and non-linear regression analyses were conducted on nail withdrawal load with SG, good correlations were obtained between nail withdrawal load and SG.