Browse > Article
http://dx.doi.org/10.12989/anr.2020.9.2.083

Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation  

Farazin, Ashkan (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Advances in nano research / v.9, no.2, 2020 , pp. 83-90 More about this Journal
Abstract
This research investigates the effect of single walled carbon nanotubes (SWCNTs) dimensions in terms of diameter on the mechanical properties (longitudinal and transverse Young's modulus) of the simulated nanocomposites by molecular dynamics (MDs) method. MDs utilized to create nanocomposite models consisting of five case studies of SWCNTs with different chiralities (5, 0), (10, 0), (15, 0), (20, 0) and (25, 0) as the reinforcement and using polymethyl methacrylate (PMMA) as the common matrix. The results show that with increasing of SWCNTs diameter, the mechanical and physical properties increase. It is important that with the increasing of SWCNTs diameter, density, longitudinal and transverse Young's modulus, shear modulus, poisson's ratio, and bulk modulus of simulated nanocomposite from (5, 0) to (25, 0) approximately becomes 1.54, 3, 2, 1.43, 1.11 and 1.75 times more than (5, 0), respectively. Then to validate the results, the stiffness matrix is obtained by Materials studio software.
Keywords
molecular dynamics simulation; mechanical properties; polymethyl methacrylate; single walled carbon nanotubes; different chiralities;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.   DOI
2 Ghorbanpour Arani, A., BabaAkbar Zarei, H., Eskandari, M. and Pourmousa, P. (2019), "Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field ", J Sandw. Struct. Mater., 21(7), 2194-2218. https://doi.org/10.1177/1099636217743177.   DOI
3 Hadipeykani, M., Aghadavoudi, F. and Toghraie, D. (2020), "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer-based epoxy nanocomposite reinforced by CNT: a statistical study", Physica A, 123995. https://doi.org/10.1016/j.physa.2019.123995.
4 Haghighi, M., Khodadadi, A., Golestanian, H. and Aghadavoudi, F. (2020), "Effects of defects and functional groups on gr aphene and nanotube thermoset epoxy-based nanocomposites mechanical properties using molecular dynamics simulation", Polym. Polym. Compos., 0967391120929075. https://doi.org/10.1177/0967391120929075.
5 Honma, M., Kawahara, K., Tsuda, T., Kurihara, A. and Okabe, T. (2020), "Effects of thermoplastic resin properties on fracture mode and welding strength with welding technology of thermoset FRP", Mater. Syst., 37, 43-51. https://doi.org/10.34401/materialssystem.37.0_43.
6 Iuvshin, A.M., Tretyakov, S.D., Andreev, Y.S. and Gibadullin, I.N. (2020), "Thermoplastic polymer composites production by automated fiber placement method", Key Eng. Mater., 836, 78-83. https://doi.org/10.4028/www.scientific.net/KEM.836.78.   DOI
7 Mousa, W.F., Kobayashi, M., Shinzato, S., Kamimura, M., Neo, M., Yoshihara, S. and Nakamura, T. (2000), "Biological and mechanical properties of PMMA-based bioactive bone cements", Biomaterials, 21(21), 2137-2146. https://doi.org/10.1016/S0142-9612(00)00097-1.   DOI
8 Nawafleh, N. and Celik, E. (2020), "Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance", Addit. Manuf., 33, 101109. https://doi.org/10.1016/j.addma.2020.101109.   DOI
9 Odegard, G.M., Clancy, T.C. and Gates, T.S. (2017), Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites, Jenny Stanford Publishing, USA.
10 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, Int. J., 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
11 Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126(3), 250-257. https://doi.org/10.1115/1.1751182.   DOI
12 Rostami, R. and Mohammadimehr, M. (2020), "Dynamic stability and bifurcation analysis of sandwich plate with considering FG core and FG-CNTRC face sheets", J. Sandw. Struct. Mater. [In press] https://doi.org/10.1177/1099636220909766.
13 Schichtel, J.J. and Chattopadhyay, A. (2020), "Modeling thermoset polymers using an improved molecular dynamic crosslinking methodology", Comput. Mater. Sci., 174, 109469. https://doi.org/10.1016/j.commatsci.2019.109469.   DOI
14 Shahedi, S. and Mohammadimehr, M. (2019), "Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments", Mech. Based Des. Struct. Mach., 1-31. https://doi.org/10.1080/15397734.2019.1646661.
15 Aghadavoudi, F., Golestanian, H. and Beni, Y.T. (2016), "Investigation of CNT defects on mechanical behavior of crosslinked epoxy-based nanocomposites by molecular dynamics", Int. J. Adv. Des. Manuf. Technol., 9(1), 137-146.
16 Aghadavoudi, F., Golestanian, H. and Tadi Beni, Y. (2018), "Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling", Polym. Compos., 39(12), 4513-4523. https://doi.org/10.1002/pc.24557.   DOI
17 Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E. and Kamyab, B. (2020), "A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation", AUT J. Mech. Eng. [In press] https://doi.org/10.22060/AJME.2020.17450.5862.
18 Aghadavoudi, F., Golestanian, H. and Zarasvand, K.A. (2019), "Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: experimental and multiscale modelling", Polym. Bull., 76(8), 4275-4294. https://doi.org/10.1007/s00289-018-2602-9.   DOI
19 AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A Solids, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.   DOI
20 Al-Haik, M., Pham, T.T., Skandani, A.A., Bond, J. and El-Genk, M.S. (2015), "Effect of the chirality on the radiation induced damage of carbon nanotubes/polyethylene composites: a molecular dynamics approach", J. Comput. Theor. Nanosci., 12(2), 270-279. https://doi.org/10.1166/jctn.2015.3728.   DOI
21 Laurent, C., Flahaut, E. and Peigney, A. (2010), "The weight and density of carbon nanotubes versus the number of walls and diameter", Carbon, 48(10), 2994-2996. https://doi.org/10.1016/j.carbon.2010.04.010.   DOI
22 Liu, H., Liu, H. and Yang, J. (2017), "Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium", Physica E Low Dimens. Syst. Nanostruct., 93, 153-159. https://doi.org/10.1016/j.physe.2017.05.022.   DOI
23 Liu, T., Zhang, H., Zuo, M., Zhang, W., Zhu, W. and Zheng, Q. (2019), "Selective location and migration of poly (methyl methacrylate)-grafted clay nanosheets with low grafting density in poly (methyl methacrylate)/poly (styrene-co-acrylonitrile) blends", Compos. Sci. Technol., 169, 110-119. https://doi.org/10.1016/j.compscitech.2018.11.021   DOI
24 Low, S. and Shon, Y.S. (2018), "Molecular interactions between pre-formed metal nanoparticles and graphene families", Adv. Nano Res., Int. J., 6(4), 357-375. https://doi.org/10.12989/anr.2018.6.4.357.
25 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
26 Smart, S.K., Cassady, A.I., Lu, G.Q. and Martin, D.J. (2006), "The biocompatibility of carbon nanotubes", Carbon, 44(6), 1034-1047. https://doi.org/10.1016/j.carbon.2005.10.011.   DOI
27 Sutrakar, V.K., Subramanya, N. and Mahapatra, D.R. (2015), "Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study", Adv. Nano Res., Int. J., 3(3), 143-168. https://doi.org/10.12989/anr.2015.3.3.143.   DOI
28 Tarfaoui, M., Lafdi, K. and El Moumen, A. (2016), "Mechanical properties of carbon nanotubes-based polymer composites", Compos. Part B Eng., 103, 113-121. https://doi.org/10.1016/j.compositesb.2016.08.016.   DOI
29 Mahboob, M. and Islam, M.Z. (2013), "Molecular dynamics simulations of defective CNT-polyethylene composite systems", Comput. Mater. Sci, 79, 223-229. https://doi.org/10.1016/j.commatsci.2013.05.042.   DOI
30 Marani, R. and Perri, A.G. (2017), "An approach to model the temperature effects on IV characteristics of CNTFETs", Adv. Nano Res., Int. J., 5(1), 61-67. https://doi.org/10.12989/anr.2017.5.1.061.   DOI
31 Yang, S., Yu, S., Kyoung, W., Han, D.S. and Cho, M. (2012), "Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections", Polymer, 53(2), 623-633. https://doi.org/10.1016/j.polymer.2011.11.052.   DOI
32 Yu, S., Yang, S. and Cho, M. (2009), "Multi-scale modeling of cross-linked epoxy nanocomposites", Polymer, 50(3), 945-952. https://doi.org/10.1016/j.polymer.2008.11.054.   DOI
33 Arash, B., Wang, Q. and Varadan, V.K. (2014), "Mechanical properties of carbon nanotub e/polymer composites", Sci. Rep., 4, 6479. https://doi.org/10.1038/srep06479.   DOI
34 Babaeeian, M. and Mohammadimehr, M. (2020), "Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method", Opt. Lasers Eng., 128, 106002. https://doi.org/10.1016/j.optlaseng.2020.106002.   DOI
35 Farazin, A., Aghadavoudi, F., Motififard, M., Saber-Samandari, S. and Khandan, A. (2020), "Nanostructure, molecular dynamics simulation and mechanical performance of PCL membranes reinforced with antibacterial nanoparticles", J. Appl. Comput. Mech. [In press] https://doi.org/10.22055/JACM.2020.32902.2097
36 Chan, J.X., Wong, J.F., Hassan, A., Mohamad, Z. and Othman, N. (2020), "Mechanical properties of wollastonite reinforced thermoplastic composites: A review", Polym. Compos., 41(2), 395-429. https://doi.org/10.1002/pc.25403.   DOI
37 Emdadi, M., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method", Adv. Nano Res., Int. J., 7(2), 109-123. https://doi.org/10.12989/anr.2019.7.2.109.   DOI
38 Farazin, A., Aghdam, H.A., Motififard, M., Aghadavoudi, F., Kordjamshidi, A., Saber-Samandari, S. and Khandan, A. (2019), "A polycaprolactone b io-nanocomposite bone substitute fabricated for femoral fracture approaches: molecular dynamic and micro-mechanical investigation", J. Nanoanalysis, 6(3), 172-184. https://doi:10.22034/jna.2019.584848.1134.
39 Farzinpour, M., Toghraie, D., Mehmandoust, B., Aghadavoudi, F. and Karimipour, A. (2020), "Molecular dynamics study of barrier effects on ferro-nanofluid flow in the presence of constant and time-dependent external magnetic fields", J. Mol. Liq., 113152. https://doi.org/10.1016/j.molliq.2020.113152.
40 Firme III, C.P. and Bandaru, P.R. (2010), "Toxicity issues in the application of carbon nanotubes to biological systems", Nanomedicine, 6(2), 245-256. https://doi.org/10.1016/j.nano.2009.07.003.   DOI
41 Mohammadimehr, M., Emdadi, M. and Rousta Navi, B. (2018a), "Dynamic stability an alysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory", J. Sandw. Struct. Mater., 22(4), 1199-1234. https://doi.org/10.1177/1099636218782770.   DOI
42 Marcadon, V., Brown, D., Herve, E., Mele, P., Alberola, N.D. and Zaoui, A. (2013), "Confrontation between molecular dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites", Comput. Mater. Sci., 79, 495-505. https://doi.org/10.1016/j.commatsci.2013.07.002.   DOI
43 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.   DOI
44 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.   DOI
45 Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W. and Gates, T.S. (2003), "The stress-strain behavior of polymernanotube composites from molecular dynamics simulation", Compos. Sci. Technol., 63(11), 1655-1661. https://doi.org/10.1016/S0266-3538(03)00059-9.   DOI
46 Montazeri, A., Sadeghi, M., Naghdabadi, R. and Rafii-Tabar, H. (2011), "Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites", Phys. Lett. A, 375(14), 1588-1597. https://doi.org/10.1016/j.physleta.2011.02.065.   DOI
47 Mohammadimehr, M., Mohammadi-Dehabadi, A.A., Alavi, S.M.A., Alambeigi, K., Bamdad M., Yazdani, R. and Hanifehlou, S. (2018b), "Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite", Steel Compos. Struct., Int. J., 29(3), 405-422. https://doi.org/10.12989/scs.2018.29.3.405.
48 Mortazavi, B., Cuniberti, G. and Rabczuk, T. (2015), "Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study", Comput. Mater. Sci., 99, 285-289. https://doi.org/10.1016/j.commatsci.2014.12.036.   DOI