• Title/Summary/Keyword: Dialogue-based tutoring systems

Search Result 2, Processing Time 0.028 seconds

UNIX-TUTOR : Intelligent Tutoring System for Teaching UNIX (UNIX-TUTOR : UNIX 교육을 위한 지능형 개인교사 시스템)

  • 정목동;김용란;김영성;신교선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.159-169
    • /
    • 1994
  • In this paper, we develop a prototype of ITS(Intelligent Tutoring Systems) system: UNIX TUTOR. It is designed for the purpose of teaching the UNIX beginners the principal concepts of UNIX and the shell commands using the communication between the student and the system. UNIX TUTOR engages the student in a two-way conversation that is mixed-initiative dialogue and attempts to teach the student UNIX via the Socratic method of guided discovery and the Coaching method interchangeably. And the student model is based on both the overlay model and the buggy model together. Thus TUTOR aims at teaching the students effectively whose levels of learning are different using various explanations which are determined by the student model. Because the knowledge representation for UNIX-TUTOR is based on the frame structure and the production rules it is easy to represent the complicated constructs. UNIX TUTOR is implemented on the SPARC station using X/Motif and C for cp command among 10 ones which were selected.

  • PDF

Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics (GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석)

  • Misun Kwon
    • The Mathematical Education
    • /
    • v.63 no.3
    • /
    • pp.467-484
    • /
    • 2024
  • The rapid advancement of generative AI has ushered in an era where anyone can create and freely utilize personalized chatbots without the need for programming expertise. This study aimed to develop a customized chatbot based on OpenAI's GPTs for the purpose of pre-service teacher education and to analyze its educational performance in mathematics as assessed by educators guiding pre-service teachers. Responses to identical questions from a general-purpose chatbot (ChatGPT), a customized GPTs-based chatbot, and an elementary mathematics education expert were compared. The expert's responses received an average score of 4.52, while the customized GPTs-based chatbot received an average score of 3.73, indicating that the latter's performance did not reach the expert level. However, the customized GPTs-based chatbot's score, which was close to "adequate" on a 5-point scale, suggests its potential educational utility. On the other hand, the general-purpose chatbot, ChatGPT, received a lower average score of 2.86, with feedback indicating that its responses were not systematic and remained at a general level, making it less suitable for use in mathematics education. Despite the proven educational effectiveness of conventional customized chatbots, the time and cost associated with their development have been significant barriers. However, with the advent of GPTs services, anyone can now easily create chatbots tailored to both educators and learners, with responses that achieve a certain level of mathematics educational validity, thereby offering effective utilization across various aspects of mathematics education.