• 제목/요약/키워드: Dialogue Dataset

검색결과 19건 처리시간 0.027초

사용자와 실시간으로 감성적 소통이 가능한 한국어 챗봇 시스템 개발 (Development of a Korean chatbot system that enables emotional communication with users in real time)

  • 백성대;이민호
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.429-435
    • /
    • 2021
  • In this study, the creation of emotional dialogue was investigated within the process of developing a robot's natural language understanding and emotional dialogue processing. Unlike an English-based dataset, which is the mainstay of natural language processing, the Korean-based dataset has several shortcomings. Therefore, in a situation where the Korean language base is insufficient, the Korean dataset should be dealt with in detail, and in particular, the unique characteristics of the language should be considered. Hence, the first step is to base this study on a specific Korean dataset consisting of conversations on emotional topics. Subsequently, a model was built that learns to extract the continuous dialogue features from a pre-trained language model to generate sentences while maintaining the context of the dialogue. To validate the model, a chatbot system was implemented and meaningful results were obtained by collecting the external subjects and conducting experiments. As a result, the proposed model was influenced by the dataset in which the conversation topic was consultation, to facilitate free and emotional communication with users as if they were consulting with a chatbot. The results were analyzed to identify and explain the advantages and disadvantages of the current model. Finally, as a necessary element to reach the aforementioned ultimate research goal, a discussion is presented on the areas for future studies.

Paddle 기반의 중국어 Multi-domain Task-oriented 대화 시스템 (Chinese Multi-domain Task-oriented Dialogue System based on Paddle)

  • 등우진;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.308-310
    • /
    • 2022
  • With the rise of the Al wave, task-oriented dialogue systems have become one of the popular research directions in academia and industry. Currently, task-oriented dialogue systems mainly adopt pipelined form, which mainly includes natural language understanding, dialogue state decision making, dialogue state tracking and natural language generation. However, pipelining is prone to error propagation, so many task-oriented dialogue systems in the market are only for single-round dialogues. Usually single- domain dialogues have relatively accurate semantic understanding, while they tend to perform poorly on multi-domain, multi-round dialogue datasets. To solve these issues, we developed a paddle-based multi-domain task-oriented Chinese dialogue system. It is based on NEZHA-base pre-training model and CrossWOZ dataset, and uses intention recognition module, dichotomous slot recognition module and NER recognition module to do DST and generate replies based on rules. Experiments show that the dialogue system not only makes good use of the context, but also effectively addresses long-term dependencies. In our approach, the DST of dialogue tracking state is improved, and our DST can identify multiple slotted key-value pairs involved in the discourse, which eliminates the need for manual tagging and thus greatly saves manpower.

KOMUChat : 인공지능 학습을 위한 온라인 커뮤니티 대화 데이터셋 연구 (KOMUChat: Korean Online Community Dialogue Dataset for AI Learning)

  • 유용상;정민화;이승민;송민
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.219-240
    • /
    • 2023
  • 사용자가 만족감을 느끼며 상호작용할 수 있는 대화형 인공지능을 개발하기 위한 노력이 이어지고 있다. 대화형 인공지능 개발을 위해서는 사람들의 실제 대화를 반영한 학습 데이터를 구축하는 것이 필요하지만, 기존 데이터셋은 질문-답변 형식이 아니거나 존대어를 사용하여 사용자가 친근감을 느끼기 어려운 문체로 구성되어 있다. 이에 본 논문은 온라인 커뮤니티에서 수집한 30,767개의 질문-답변 문장 쌍으로 구성된 대화 데이터셋(KOMUChat)을 구축하여 제안한다. 본 데이터셋은 각각 남성, 여성이 주로 이용하는 연애상담 게시판의 게시물 제목과 첫 번째 댓글을 질문-답변으로 수집하였다. 또한, 자동 및 수동 정제 과정을 통해 혐오 데이터 등을 제거하여 양질의 데이터셋을 구축하였다. KOMUChat의 타당성을 검증하기 위해 언어 모델에 본 데이터셋과 벤치마크 데이터셋을 각각 학습시켜 비교분석하였다. 그 결과 답변의 적절성, 사용자의 만족감, 대화형 인공지능의 목적 달성 여부에서 KOMUChat이 벤치마크 데이터셋의 평가 점수를 상회했다. 본 연구는 지금까지 제시된 오픈소스 싱글턴 대화형 텍스트 데이터셋 중 가장 대규모의 데이터이며 커뮤니티 별 텍스트 특성을 반영하여 보다 친근감있는 한국어 데이터셋을 구축하였다는 의의를 가진다.

Background music monitoring framework and dataset for TV broadcast audio

  • Hyemi Kim;Junghyun Kim;Jihyun Park;Seongwoo Kim;Chanjin Park;Wonyoung Yoo
    • ETRI Journal
    • /
    • 제46권4호
    • /
    • pp.697-707
    • /
    • 2024
  • Music identification is widely regarded as a solved problem for music searching in quiet environments, but its performance tends to degrade in TV broadcast audio owing to the presence of dialogue or sound effects. In addition, constructing an accurate dataset for measuring the performance of background music monitoring in TV broadcast audio is challenging. We propose a framework for monitoring background music by automatic identification and introduce a background music cue sheet. The framework comprises three main components: music identification, music-speech separation, and music detection. In addition, we introduce the Cue-K-Drama dataset, which includes reference songs, audio tracks from 60 episodes of five Korean TV drama series, and corresponding cue sheets that provide the start and end timestamps of background music. Experimental results on the constructed and existing datasets demonstrate that the proposed framework, which incorporates music identification with music-speech separation and music detection, effectively enhances TV broadcast audio monitoring.

Pseudo Labeling을 통한 한국어 대화 추론 데이터셋 구축 (Constructing Korean Dialogue Natural Inference Dataset through Pseudo Labeling)

  • 이영준;;최윤수;임지희;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.205-209
    • /
    • 2022
  • 페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.

  • PDF

멀티턴 대화에서 윤리적인 발화 생성을 위한 새로운 데이터 세트 (A New Dataset for Ethical Dialogue Generation in Multi-Turn Conversations)

  • 장빈;김서현;박규병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.446-448
    • /
    • 2022
  • 별개의 분류 모델을 이용하여 비윤리 발화를 억제하려 했던 과거의 시도들과는 달리, 본 연구에서는 데이터 추가를 통한 발화 생성 단계에서의 윤리성 체화에 대해 실험하였다. 본 연구에서는 분류 모델로는 감지하기 어려운 멀티턴 비윤리 공격으로 이루어진 새로운 대화 데이터 세트를 소개하고, 해당 데이터 세트를 통해 개선된 챗봇 대화 모델의 방어 성능을 공개한다.

메타버스 대화의 몰입감 증진을 위한 대화 감정 기반 실시간 배경음악 시스템 구현 (Real-time Background Music System for Immersive Dialogue in Metaverse based on Dialogue Emotion)

  • 김기락;이상아;김나현;정문열
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권4호
    • /
    • pp.1-6
    • /
    • 2023
  • 메타버스 환경에서의 배경음악은 사용자의 몰입감을 증진시키기 위해 사용된다. 하지만 현재 대부분의 메타버스 환경에서는 사전에 매칭시킨 음원을 반복 재생하며, 이는 빠르게 변화하는 사용자의 상호작용 맥락에 어울리지 못해 사용자의 몰입감을 저해시키는 경향이 있다. 본 논문에서는 보다 몰입감 있는 메타버스 대화 경험을 구현하기 위해 1) 한국어 멀티모달 감정 데이터셋인 KEMDy20을 이용하여 발화로부터 감정을 추출하는 회귀 신경망을 구현하고 2) 음원에 arousal-valence 레벨이 태깅되어 있는 DEAM 데이터셋을 이용하여 발화 감정에 대응되는 음원을 선택하여 재생한 후 3) 아바타를 이용한 실시간 대화가 가능한 가상공간과 결합하여 몰입형 메타버스 환경에서 발화의 감정에 어울리는 배경음악을 실시간으로 재생하는 시스템을 구현하였다.

식당 예약 대화 시스템 개발을 위한 한국어 데이터셋 구축 (Development of Korean Dialogue Dataset for Restaurant Reservation System)

  • 김경민;이동엽;허윤아;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.267-269
    • /
    • 2017
  • 대화 시스템(dialogue system)은 사용자의 언어를 이해하고 그 의도를 분석하여 사용자가 원하는 목적을 달성할 수 있게 도와주는 시스템이다. 인간과 비슷한 수준의 대화를 위해서는 대량의 데이터가 필요하며 데이터의 양질에 따라 그 결과가 달라진다. 최근 페이스북에서 End-to-end learning 방식을 기반으로 한 영어로 구성된 식당 예약 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하여 해당 모델에 적용한 연구가 있다. 대화 시스템에서 활용 가능한 연구가 활발히 진행되고 있지만 영어 기반의 데이터와는 다르게 식당 예약 시스템에서 다른 연구자들의 연구 목적으로 공유한 한국어 데이터셋은 아직까지도 미흡하다. 본 논문에서는 페이스북에서 구축한 영어로 구성된 식당 예약 학습 대화 데이터셋을 이용하여 한국어 기반의 식당 예약 대화 시스템에서 활용 가능한 한국어 데이터셋을 구축하고, 일상생활에서 발생 가능한 발화(utterance)에 따른 형태 변화를 통해 한국어 식당 예약 시스템 데이터셋 구축 방법을 제안한다.

  • PDF

식당 예약 대화 시스템 개발을 위한 한국어 데이터셋 구축 (Development of Korean Dialogue Dataset for Restaurant Reservation System)

  • 김경민;이동엽;허윤아;임희석
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.267-269
    • /
    • 2017
  • 대화 시스템(dialogue system)은 사용자의 언어를 이해하고 그 의도를 분석하여 사용자가 원하는 목적을 달성할 수 있게 도와주는 시스템이다. 인간과 비슷한 수준의 대화를 위해서는 대량의 데이터가 필요하며 데이터의 양질에 따라 그 결과가 달라진다. 최근 페이스북에서 End-to-end learning 방식을 기반으로 한 영어로 구성된 식당 예약 학습 대화 데이터셋(The 6 dialog bAbI tasks)을 구축하여 해당 모델에 적용한 연구가 있다. 대화 시스템에서 활용 가능한 연구가 활발히 진행되고 있지만 영어 기반의 데이터와는 다르게 식당 예약 시스템에서 다른 연구자들의 연구 목적으로 공유한 한국어 데이터셋은 아직까지도 미흡하다. 본 논문에서는 페이스북에서 구축한 영어로 구성된 식당 예약 학습 대화 데이터셋을 이용하여 한국어 기반의 식당 예약 대화 시스템에서 활용 가능한 한국어 데이터셋을 구축하고, 일상생활에서 발생 가능한 발화(utterance)에 따른 형태 변화를 통해 한국어 식당 예약 시스템 데이터셋 구축 방법을 제안한다.

  • PDF

Development of a Tourism Information QA Service for the Task-oriented Chatbot Service

  • Hoon-chul Kang;Myeong-Gyun Kang;Jeong-Woo Jwa
    • International Journal of Advanced Culture Technology
    • /
    • 제12권3호
    • /
    • pp.73-79
    • /
    • 2024
  • The smart tourism chatbot service provide smart tourism services to users easily and conveniently along with the smart tourism app. In this paper, the tourism information QA (Question Answering) service is proposed based on the task-oriented smart tourism chatbot system [13]. The tourism information QA service is an MRC (Machine reading comprehension)-based QA system that finds answers in context and provides them to users. The tourism information QA system consists of NER (Named Entity Recognition), DST (Dialogue State Tracking), Neo4J graph DB, and QA servers. We propose tourism information QA service uses the tourism information NER model and DST model to identify the intent of the user's question and retrieves appropriate context for the answer from the Neo4J tourism knowledgebase. The QA model finds answers from the context and provides them to users through the smart tourism app. We develop the tourism information QA model by transfer learning the bigBird model, which can process the context of 4,096 tokens, using the tourism information QA dataset.