• 제목/요약/키워드: Diagonal 2DLDA

검색결과 3건 처리시간 0.015초

얼굴 인식을 위한 쌍대각 2DLDA 방법 (Bilateral Diagonal 2DLDA Method for Human Face Recognition)

  • 김영길;송영준;김동우;안재형
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.648-654
    • /
    • 2009
  • 본 논문에서는 얼굴을 인식하기 위한 쌍대각 2차원 LDA를 제안하였다. 기존의 Dia2DPCA와 Dia2DLDA가 대각 방향 영상들의 행 변화량과 열 변화량 사이의 상관을 제한하기 위하여 제안되어지고 있다. 그러나 이러한 방법들은 영상들의 행방향으로 동작한다. 제한 방법에 있어서 행방향의 투영 행렬은 기존 방법과 전혀 다르게 대각 방향 얼굴 영상들의 열 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 그리고 열방향의 투영 행렬은 대각방향 얼굴 영상들의 행 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 좌우 양측의 투영 방법은 투영 행렬들을 좌우로 곱함으로써 적용된다. 그 결과로 특징 행렬의 차원과 계산 시간이 감소된다. ORL 얼굴 데이터베이스에서 수행된 실험들은 Frobenius, Yang, AMD와 같은 3가지 거리 척도를 사용하여 2DPCA, B2DPCA, 2DLDA 등과 같은 다른 얼굴 인식 방법들보다 제안된 방법의 인식률이 높음을 보여준다.

경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구 (Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire)

  • 송인;이건목;홍권의
    • Journal of Acupuncture Research
    • /
    • 제28권3호
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

슬통 진단용 설문지개발 및 진단 일치도 평가연구 (Development of Knee Pain Diagnosis Questionnaire and Clinical Study of Diagnostic Correspondent Rate)

  • 황지후;김유종;김은정;이참결;이은용;이승덕;김갑성
    • Journal of Acupuncture Research
    • /
    • 제29권5호
    • /
    • pp.61-74
    • /
    • 2012
  • Objectives : This study is perfomed for preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the knee pain. Methods : Statistical analysis about Crane's-knee wind(鶴膝風), arthralgia syndrome(痺症), knee injury(膝傷), gout arthritis(痛風), Youk jeol poung(歷節風) classified experts' opinions about knee pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis(LDA), diagonal linear discriminant analysis(DLDA), diagonal quadratic discriminant analysis(DQDA), K-nearest neighbor classification(KNN), classification and regression trees(CART), support vector machines(SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 81.65% in comparison with the original diagnosis. 2. The result analyzed by using DLDA has a hit rate of 63.3% in comparison with the original diagnosis. 3. The result analyzed by using DQDA has a hit rate of 65.14% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 74.31% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 75.23% in comparison with the original diagnosis when the test of selected 13 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 87.16% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on knee pain generally turned out to have a significant result.