• Title/Summary/Keyword: Diagnostics Systems

Search Result 200, Processing Time 0.025 seconds

Approach towards qualification of TCP/IP network components of PFBR

  • Aditya Gour;Tom Mathews;R.P. Behera
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3975-3984
    • /
    • 2022
  • Distributed control system architecture is adopted for I&C systems of Prototype Fast Breeder Reactor, where the geographically distributed control systems are connected to centralized servers & display stations via switched Ethernet networks. TCP/IP communication plays a significant role in the successful operations of this architecture. The communication tasks at control nodes are taken care by TCP/IP offload modules; local area switched network is realized using layer-2/3 switches, which are finally connected to network interfaces of centralized servers & display stations. Safety, security, reliability, and fault tolerance of control systems used for safety-related applications of nuclear power plants is ensured by indigenous design and qualification as per guidelines laid down by regulatory authorities. In the case of commercially available components, appropriate suitability analysis is required for getting the operation clearances from regulatory authorities. This paper details the proposed approach for the suitability analysis of TCP/IP communication nodes, including control systems at the field, network switches, and servers/display stations. Development of test platform using commercially available tools and diagnostics software engineered for control nodes/display stations are described. Each TCP link behavior with impaired packets and multiple traffic loads is described, followed by benchmarking of the network switch's routing characteristics and security features.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Securing a Cyber Physical System in Nuclear Power Plants Using Least Square Approximation and Computational Geometric Approach

  • Gawand, Hemangi Laxman;Bhattacharjee, A.K.;Roy, Kallol
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.484-494
    • /
    • 2017
  • In industrial plants such as nuclear power plants, system operations are performed by embedded controllers orchestrated by Supervisory Control and Data Acquisition (SCADA) software. A targeted attack (also termed a control aware attack) on the controller/SCADA software can lead a control system to operate in an unsafe mode or sometimes to complete shutdown of the plant. Such malware attacks can result in tremendous cost to the organization for recovery, cleanup, and maintenance activity. SCADA systems in operational mode generate huge log files. These files are useful in analysis of the plant behavior and diagnostics during an ongoing attack. However, they are bulky and difficult for manual inspection. Data mining techniques such as least squares approximation and computational methods can be used in the analysis of logs and to take proactive actions when required. This paper explores methodologies and algorithms so as to develop an effective monitoring scheme against control aware cyber attacks. It also explains soft computation techniques such as the computational geometric method and least squares approximation that can be effective in monitor design. This paper provides insights into diagnostic monitoring of its effectiveness by attack simulations on a four-tank model and using computation techniques to diagnose it. Cyber security of instrumentation and control systems used in nuclear power plants is of paramount importance and hence could be a possible target of such applications.

Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System (한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가)

  • Kim, Hyeyoung;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.263-276
    • /
    • 2022
  • The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.

Evaluation of Software Diagnostics for Secure Operational Environment in Nuclear I&C systems (원전 계측제어 시스템 보안성환경을 위한 진단기능 평가)

  • Yoo, Sung Goo;Seul, Namo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.107-112
    • /
    • 2016
  • Safety Critical Instrumentation and Control Systems perform those functions to maintain nuclear power plants' parameters within acceptable limits established for a design basis events and anticipated operating occurrence to ensure safety function. Those digitalized systems shall protect inadvertent and non-malicious behavior to ensure the reliable operation of systems, known as a Secure Development and Operational Environment(SDOE). SDOE would be established through managerial and technical controls. The objective of this paper is to evaluate the effectiveness of Cyclic Redundancy Checksum diagnostic, which is one of technical controls for SDOE, that can confirm the integrity of software of I&C systems to establish the secure environment. The results of this assessment would be the practical implementation of design and safety review of nuclear I&C systems.

Chemical Modification of Nucleic Acids toward Functional Nucleic Acid Systems

  • Venkatesan, Natarajan;Seo, Young-Jun;Bang, Eun-Kyoung;Park, Sun-Min;Lee, Yoon-Suk;Kim, Byeang-Hyean
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.613-630
    • /
    • 2006
  • Nucleic acids are virtually omnipresent; they exist in every living being. These macromolecules constitute the most important genetic storage material: the genes. Genes are conserved throughout the evolution of all living beings; they are transmitted from the parents to their offspring. Many interdisciplinary research groups are interested in modifying nucleic acids for use in a wider variety of applications. These modified oligonucleotides are used in many diverse fields, including diagnostics, detection, and therapeutics. In this account, we summarize our research efforts related to modified nucleic acid systems. First, we discuss our syntheses of modified oligonucleotides containing fluorescent tags for use as molecular probes (molecular beacons) to detect single-nucleotide polymorphisim (SNP) in nucleic acids and to distinguish between the B and Z forms of DNA. We also describe our research efforts into oligonucleotides functionalized with steroid derivatives to enhance their cell permeability, and the synthesis of several calix[4]arene-oligonucleotide conjugates possessing the ability to form defined triplexes. In addition, we have performed systematic studies to have an understanding about the functional groups necessary for a given nucleoside to behave as an organo or hydrogelator. The aggregation properties of a number of nucleoside-based phospholipids have been examined in different solvents; some of these derivatives are potential candidates for use as nucleoside-based liposomes. Finally, we also describe our research efforts toward the preparation of isoxazole- and isoxazoline-containing nucleoside derivatives and the determination of their antiviral activities.

INFRARED AND HARD X-RAY DIAGNOSTICS OF AGN IDENTIFICATION FROM THE AKARI AND SWIFT/BAT ALL-SKY SURVEYS

  • Matsuta, K.;Gandhi, P.;Dotani, T.;Nakagawa, T.;Isobe, N.;Ueda, Y.;Ichikawa, K.;Terashima, Y.;Oyabu, S.;Yamamura, I.;Stawarz, L.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.285-286
    • /
    • 2012
  • We combine data from two all-sky surveys, the Swift/Burst Alert Telescope 22 Month Source Catalog and the AKARI Point Source Catalogue, in order to study the connection between the hard X-ray (> 10 keV) and infrared (IR) properties of local active galactic nuclei (AGN). We find two photometric diagnostics are useful for source classification: one is the X-ray luminosity vs. IR color diagram, in which type 1 radio-loud AGN are well isolated from other AGN. The second one uses the X-ray vs. IR color-color diagram as a redshift-independent indicator for identifying Compton-thick (CT) AGN. Importantly, CT AGN and starburst galaxies in composite systems can also be separated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new surveys such as with WISE and NuSTAR.

Recognition Surrey of Patients about Eight Constitution Medicine (8체질의학에 대한 환자 인식 조사)

  • Park, Jae-Sung;Park, Young-Jae;Min, Jae-Young;Shin, Yong-Sup;Lee, Sang-Chul;Park, Young-Bae;Kim, Min-Yong
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.1
    • /
    • pp.130-145
    • /
    • 2007
  • Background and purpose: The purpose of this study is to search recognition patients in Eight constitution Oriental Medical Clinic. And we compare Eight constitution acupuncture methods with the another acupuncture methods. Methods: The subjects were comprised of 200 volunteers. In 3 Eight constitution Oriental Medical Clinic participants were chosen through questionnaire. Finishing answer participants put in their lacked name questionnaire to gathering box. DecisionTree (AnswerTree 3.0 Ver.) statistical software was used for statistical analysis. Results and Conclusion: As a result of the analysis of cognition to Eight constitution acupuncture methods was influenced to patients health, dietetic therapy is best influenced. Next influenced acupuncture reflex degree, age, job, constitution, cure periods, sex distinction, cure degree, diagnosed participant's Constitution by pulse diagnosis in 8 Constitution Medicine.

  • PDF

Development of Questionnaires for Pathogenesis Analysis of Bojungikgitang Symptom (보중익기탕증(補中益氣湯證)의 병인논(病因論)적 분석을 위한 설문문항(說問問項) 개발(開發))

  • Yoon, Tae-Deug;Park, Young-Jae;Park, Young-Bae;Lee, Sang-Chul;Oh, Hwan-Sup
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • Background: Bojungikgitang is one of the most common herbs in oriental medicine. Principally, this medicine heals illness from overwork and stress. Therefore, it is frequently used in the ancient community. Because of insufficiency in data, objective judgements are difficult in remedial effects by Bojungikgitang. In order to make objectivity diagnose data, this research is developed. Purpose: The aim of the research is to make questionnaire for the medicine and the objective is to sell to the public from the local clinic. Methods: The questionnaire which includes symptoms and signs for diagnose of Bojungikgitang is studied by the Delphi method and average value. Results: By the Delphi method and average value, 25 Items of questionnaires are choosen for the research. Conclusions: Further research is necessary for modification of questionnaire by statistics and certification by clinical trial. The statistics and verification by clinical trial is necessary with modification for further research.

  • PDF