The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.
Seokhwan Bang;Sokhib Tukhtaev;Kwang Jin Ko;Deok Hyun Han;Minki Baek;Hwang Gyun Jeon;Baek Hwan Cho;Kyu-Sung Lee
Investigative and Clinical Urology
/
v.63
no.3
/
pp.301-308
/
2022
Purpose To diagnose lower urinary tract symptoms (LUTS) in a noninvasive manner, we created a prediction model for bladder outlet obstruction (BOO) and detrusor underactivity (DUA) using simple uroflowmetry. In this study, we used deep learning to analyze simple uroflowmetry. Materials and Methods We performed a retrospective review of 4,835 male patients aged ≥40 years who underwent a urodynamic study at a single center. We excluded patients with a disease or a history of surgery that could affect LUTS. A total of 1,792 patients were included in the study. We extracted a simple uroflowmetry graph automatically using the ABBYY Flexicapture® image capture program (ABBYY, Moscow, Russia). We applied a convolutional neural network (CNN), a deep learning method to predict DUA and BOO. A 5-fold cross-validation average value of the area under the receiver operating characteristic (AUROC) curve was chosen as an evaluation metric. When it comes to binary classification, this metric provides a richer measure of classification performance. Additionally, we provided the corresponding average precision-recall (PR) curves. Results Among the 1,792 patients, 482 (26.90%) had BOO, and 893 (49.83%) had DUA. The average AUROC scores of DUA and BOO, which were measured using 5-fold cross-validation, were 73.30% (mean average precision [mAP]=0.70) and 72.23% (mAP=0.45), respectively. Conclusions Our study suggests that it is possible to differentiate DUA from non-DUA and BOO from non-BOO using a simple uroflowmetry graph with a fine-tuned VGG16, which is a well-known CNN model.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.4
/
pp.25-34
/
2024
This paper presents the development of a mobile application that detects and identifies canine skin diseases by training a deep learning-based U-Net model to infer the presence and location of skin lesions from images. U-Net, primarily used in medical imaging for image segmentation, is effective in distinguishing specific regions of an image in a polygonal form, making it suitable for identifying lesion areas in dogs. In this study, six major canine skin diseases were defined as classes, and the U-Net model was trained to differentiate among them. The model was then implemented in a mobile app, allowing users to perform lesion analysis and prediction through simple camera shots, with the results provided directly to the user. This enables pet owners to monitor the health of their pets and obtain information that aids in early diagnosis. By providing a quick and accurate diagnostic tool for pet health management through deep learning, this study emphasizes the significance of developing an easily accessible service for home use.
Kim, So Young;Lim, Seong Joon;Yun, Sin Weon;Lee, Dong Keun;Choi, Eung Sang
Clinical and Experimental Pediatrics
/
v.45
no.6
/
pp.773-782
/
2002
Purpose : To identify the necessity of more reasonable diagnostic criteria and the possibility of early prediction of coronary involvement in the higher risk group, we investigated and compared clinical and laboratory findings in the acute phase and coronary involvements in those younger (n=17) and older(n=53) than one year of age in Kawasaki disease(KD). Methods : Retrospective chart reviews were performed on 70 patients with KD who were admitted to the Chung-Ang University Hospital from April 1997 to May 2001. Results : Male were significantly higher in the younger age group(M : F ratio 3.3 : 1 vs. 1.0 : 1, P=0.004). Fever durations before intravenous immunoglobulin(IVIG) and echocardiography were significantly shorter in the younger group($4.6{\pm}1.3$ vs. $6.2{\pm}2.5$, P=0.004 vs. 0.01, respectively). Cases meeting typical diagnostic criteria were significantly less in the younger group(P=0.006). In the laboratory findings, serum albumin, BUN and $K^+$ levels in the acute febrile phase were significantly higher in the younger group(P=0.002, 0.006, <0.001, respectively) and incidences of coronary artery dilatation in the acute phase were significantly higher in the younger group(P=0.01). Conclusion : Although less met the typical diagnostic criteria of KD, infants younger than one year of age are more susceptible to coronary artery change in the acute febrile phase. Therefore, KD should be entertained as a diagnostic possibility in young infants with prolonged fever without distinct fever focus, and echocardiography should be considered as part of the evaluation of these patients, and then early diagnosis and prompt IVIG should be conducted.
Sun Hwa Chung;Hyun Ji Kang;Hyo Jeong Lee;Jin Sil Kim;Jeong Kyong Lee
Journal of the Korean Society of Radiology
/
v.82
no.5
/
pp.1207-1217
/
2021
Purpose To evaluate the safety and efficacy of ultrasound-guided percutaneous core needle biopsy (USPCB) of pancreatic and peripancreatic lesions adjacent to critical vessels. Materials and Methods Data were collected retrospectively from 162 patients who underwent USPCB of the pancreas (n = 98), the peripancreatic area adjacent to the portal vein, the paraaortic area adjacent to pancreatic uncinate (n = 34), and lesions on the third duodenal portion (n = 30) during a 10-year period. An automated biopsy gun with an 18-gauge needle was used for biopsies under US guidance. The USPCB results were compared with those of the final follow-up imaging performed postoperatively. The diagnostic accuracy and major complication rate of the USPCB were calculated. Multiple factors were evaluated for the prediction of successful biopsies using univariate and multivariate analyses. Results The histopathologic diagnosis from USPCB was correct in 149 (92%) patients. The major complication rate was 3%. Four cases of mesenteric hematomas and one intramural hematoma of the duodenum occurred during the study period. The following factors were significantly associated with successful biopsies: a transmesenteric biopsy route rather than a transgastric or transenteric route; good visualization of targets; and evaluation of the entire US pathway. In addition, the number of biopsies required was less when the biopsy was successful. Conclusion USPCB demonstrated high diagnostic accuracy and a low complication rate for the histopathologic diagnosis of pancreatic and peripancreatic lesions adjacent to critical vessels.
Background: The decision to administer oral anticoagulation therapy depends on accurate assessment of stroke risk in patients with atrial fibrillation (AF). Various stroke risk stratification schemes have been developed to help inform clinical decision making. The CHADS2 and CHA2DS2-VASc scores have been used in estimating the risk of stroke in patients with AF. Recently R2CHA2DS2-VASc score was developed. The objective of the current study is to validate the usefulness of the R2CHA2DS2-VASc score and to compare the accuracy of the CHADS2, CHA2DS2-VASc, and R2CHA2DS2-VASc scores in predicting a patient's risk of stroke. Methods: Based on medical records, we conducted a retrospective study of patients hospitalized with AF from March 2011 to July 2013. A total of 448 AF patients were included in this study. The receiver operating characteristic (ROC) curve analysis in MedCalc was used for comparison with respective diagnostic values. Results: The patient characteristics showed male predominance (60.9%). Among the 448 AF patients, 131 (29.2%) patients had strokes during the study. A R2CHA2DS2-VASc score of more than 5 is the optimal cut-off value for prediction of stroke. A risk score of three, the area under the ROC curve (AUC) of R2CHA2DS2-VASc score (AUC 0.631; 95% confidence interval, 0.585-0.679) was the highest. A significant difference was observed between AUC for R2CHA2DS2-VASc, CHADS2, and CHA2DS2-VASc scores, but no meaningful difference between CHADS2 and CHA2DS2-VASc scores. Conclusion: We determined the usefulness of the R2CHA2DS2-VASc score, which showed better association with stroke than the CHADS2 and CHA2DS2-VASc scores.
Significant feature extraction in cancer cell image analysis is an important process for grading cell carcinoma. In this study, we propose a method for 3D quantitative analysis of cell nuclei based upon digital image cytometry. First, we acquired volumetric renal cell carcinoma data for each grade using confocal laser scanning microscopy and segmented cell nuclei employing color features based upon a supervised teaming scheme. For 3D visualization, we used a contour-based method for surface rendering and a 3D texture mapping method for volume rendering. We then defined and extracted the 3D morphological features of cell nuclei. To evaluate what quantitative features of 3D analysis could contribute to diagnostic information, we analyzed the statistical significance of the extracted 3D features in each grade using an analysis of variance (ANOVA). Finally, we compared the 2D with the 3D features of cell nuclei and analyzed the correlations between them. We found statistically significant correlations between nuclear grade and 3D morphological features. The proposed method has potential for use as fundamental research in developing a new nuclear grading system for accurate diagnosis and prediction of prognosis.
Background: Despite the fact that ovarian cancer is the seventh most common cancer in women worldwide and the fifth leading cause of cancer death, It is the most common cause of death due to reproductive cancers in Thailand where epithelial ovarian cancer (EOC) is commonly found. According to a Thai statistical analysis in 2010 by the Department of Medical Services, epithelial ovarian cancer was the sixth most common cancer in Thailand from 2001to 2003.The incidence of 5.1 per 100,000 women per year. Human epididymis protein 4 (HE4) is a novo diagnostic tumor marker for EOC. The combination of HE4 and carcinoma antigen 125 (CA 125) is a tool for detecting epithelial ovarian cancer (EOC) better than using CA 125 alone. Therefore, the researcher is interested in HE4 does have a role to predict recurrent epithelial ovarian cancer. Materials and Methods: The patients who had complete response after diagnosed with epithelial ovarian cancer by pathology, FIGO stage 3 or more had been treated through surgery and chemotherapy at the Sunpasitthiprasong Hospital from June 2014 until March 2016. The patients were followed up every three months, using tumor marker (CA 125, HE4,Carcinoma antigen 19-9) together with other checkup methods, such as rectovaginal examination, CXR every year and other imaging as indication. Afterwards, the data was analyzed for the ability of HE4 to detect recurrence of epithelial ovarian cancer. Results: In 47 patients in this study follow-up for 22 months after complete response treatment from surgery and chemotherapy in epithelial ovarian cancer, 23 had recurrent disease and HE4 titer rising. The patients with recurrent epithelial ovarian cancer demonstrated high levels of both HE4 and CA125 with sensitivity of 91.3% and 52.7% respectively, specificity of 87.5% and 95.6% and positive predictive values of 87.5% and 85.7%. HE4 can predict recurrent epithelial ovarian cancer (p-value=0.02242). Comparing HE4 and CA125 in predicting recurrent epithelial ovarian cancer HE4 had more potential than CA125 (p-value =0.8314). Conclusions: The present study showed HE4 to have a role in predicting recurrent epithelial ovarian cancer and HE4 is potentially better than CA125 as a marker for this purpose.
Craniofacial growth pattern is an important diagnostic data in the course of orthodontic diagnosis and treatment planning ; it also has great influence in the establishment of occlusion as well as shaping and development of face. There have been many studies to classify different craniofacial growth patterns and attempts to predict growth patterns. This study aimed to correlate craniofacial growth pattern and symphysis morphology. 120 adult patients with age from 19 to 39 (mean age : 23.1) were chosen as subjects , using lateral cephalometric films. their anterior to posterior facial height ratios were calculated. They were divided into 3 groups - clockwise growth pattern with $56\%-62\%$(36subjects), counter-clockwise growth pattern group with $65\%$-80\%$(43subjects) and normal growth pattern group with $62\%-65\%$(41subjects). Symphysis morphology and Prominence evaluation in each subject were studied and the following conclusions were drawn : 1. In comparison of symphysis morphology between the sex groups, men showed large symphysis height and prominence. 2. Concerning the symphysis morphology, the clockwise growth pattern group showed larger height, H/D ratio and actual length but smaller depth, angle, effective length and E/A ratio compared to the counter -clockwise growth pattern group. 3. Those with smaller prominance of symphysis showed clockwise growth tendency and those with larger prominance showed counter-clockwise growth tendency.
Korean Journal of Agricultural and Forest Meteorology
/
v.10
no.2
/
pp.35-46
/
2008
Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.