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ABSTRACT

The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored 
treatment. The accumulation of clinical information from patients with HF generates big data, 
which poses challenges for traditional analytical methods. To address this, big data approaches 
and artificial intelligence (AI) have been developed that can effectively predict future observa-
tions and outcomes, enabling precise diagnoses and personalized treatments of patients with 
HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find pat-
terns, and make predictions without explicit instructions. ML can be supervised, unsupervised, 
or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with 
multiple layers to find complex patterns. These AI technologies have shown significant poten-
tial in various aspects of HF research, including diagnosis, outcome prediction, classification of 
HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data 
sources, such as electrocardiography, electronic health records, and imaging data, can enhance 
the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring 
aided by AI enable the earlier detection of HF and improved patient care. This review focuses on 
the rationale behind utilizing AI in HF and explores its various applications.
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INTRODUCTION

The prevalence of heart failure (HF) is increasing,1,2) along with the complexity of its treatment 
and diagnosis. The accurate diagnosis of HF relies on various invasive and noninvasive tests, 
and tailored treatment is based on the characteristics and type of HF.3-6) The diagnosis and 
management of patients with HF require a substantial amount of clinical information, leading 
to the accumulation of big data. However, traditional analytical methods are insufficient for 
handling large datasets.7,8)

Consequently, the significance of big data approaches and artificial intelligence (AI) in med-
icine has grown.9) This review discusses the role of AI in HF. We focused on traditional risk 
factors, electrocardiography (ECG), electronic health records (EHRs), and telemonitoring, 
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and excluded each detailed imaging modality (cardiac magnetic 
resonance image, echocardiography, nuclear imaging, etc.).

IMPORTANCE OF BIG DATA 
APPROACHES IN HF
The era of big data is upon us, a term that refers to the explo-
sion of available information. Enormous amounts of extremely 
high-dimensional or unstructured data are being produced and 
stored at a much lower cost than ever before, driving the big data 
movement. The main goal of analyzing such high-dimensional 
data is to develop effective methods for accurately predicting 
future observations and results.10) However, the large sample size 
and high dimensionality of big data introduce unique computa-
tional and statistical challenges, necessitating the development 
of new paradigms and analysis techniques.11) These innovations 
aim to address issues such as data noise, erroneous correlations, 
and computational power constraints.11) One common objective 
of computational methods is feature or dimension reduction.12) 
Statistical learning and modeling are frequently employed to 
estimate populations (inference) or predict future experiments 
after preprocessing and performing possible dimension reduc-
tion. These analyses frequently rely on AI and machine learning 
(ML), which are algorithms that can perform computational 
tasks without specific user instructions.13)

HF is an important target for big data research because of its 
complex etiology, numerous comorbidities, and the prolonged 
and progressive course of the disease.7,14) The 2 most popular big 
data types used in HF research are clinical data and omics. Clini-
cal data are collected using various means such as imaging meth-
ods, echocardiography, ECG, wearables, and EHRs. In contrast, 
the omics technologies, including genomics, transcriptomics, 
proteomics, and metabolomics, are primarily used for analyzing 
heart tissue or blood samples.7,15) However, the accuracy, struc-
ture, and volume of omics and clinical data present challenges 
for data analysis.16) To advance biological comprehension and 
clinical care of patients with HF, both conventional statistical 
methods and ML approaches are employed to gather critical in-
sights from big data sources.

APPLICATION OF AI IN HF

Concept of AI, ML, and deep learning (DL)
AI is defined as the intelligence of a computer or machine that en-
ables it to imitate or mimic human capabilities.17,18) This technol-
ogy can make decisions without requiring human intervention. 

ML is a subfield of AI that empowers computers to analyze data 
beyond programmatic procedures, identify patterns within the 
data, apply learned patterns to new data, and perform computa-
tional tasks more effectively than humans.19)

Traditional statistical methods and ML have several distinct and 
overlapping characteristics.20) High-dimensional datasets with 
numerous variables present a challenge for traditional statistical 
techniques, such as regression, whereas ML methods are well 
suited to handle such complex data. Moreover, ML can evaluate 
intricate connections between predictors and handle correlated 
or collinear data. To accommodate temporal changes in data, 
ML can generate dynamic models that are continuously updated 
using new training data. For instance, “baseline” features, such 
as vital signs, laboratory results, and comorbidities, may change 
over time. Although the evolution of these traits may be crucial 
for outcome prediction, conventional statistical tools are fre-
quently ill-equipped to handle them.20) ML algorithms offer the 
ability to calculate nonlinear relationships more effectively and 
precisely; however, their higher accuracy comes at the expense 
of interpretability.21)

There are 3 primary/representative methods in ML: supervised, 
unsupervised, and semi-supervised learning (Figure 1).20,22) Su-
pervised ML is characterized by the use of human-labeled data-
sets that are intended to “supervise” or “train” algorithms to 
correctly classify data or predict outcomes. In contrast, unsuper-
vised ML is used to analyze and group unlabeled datasets, uncov-
ering hidden patterns in the data without human intervention. 
Semi-supervised is a method that combines both supervised and 
unsupervised methods with limited labeled datasets and unla-
beled datasets, where the unlabeled datasets are grouped with 
labeled datasets based on their traits. In the field of cardiovascu-
lar medicine, ML can uncover disease mechanisms and increase 
the precision of diagnosis, management, and risk prediction by 
identifying clinically relevant patterns or phenotypes that may 
not be apparent to clinicians.23) In fact, algorithms such as re-
gression, decision trees, random forest, support vector machine, 
naïve Bayes, K-Nearest neighbors, and extreme gradient boost-
ing are commonly used to analyze medical data.

DL is a subset of ML that uses multiple layers of artificial neural 
networks to discover or predict patterns.24) It mimics the operation 
of the human brain and was originally developed by Dr. Warren 
McCulloch (neuroscientist) and Walter Pitts (computer scientist) 
in 1943 as the “McCulloch-Pitts (MP) neuron.”25) MP neurons are 
structured similarly to brain neurons. Similar to the dendrites of 
neurons, they receive external data, perform calculations in the 
nucleus, and output the results as binary signals (1 or 0) that are 
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transmitted through the axons. When these neurons are con-
nected, they create a neural network structure that resembles 
that of the human brain. Recently, the computational power of 
MP neurons has advanced, and they are referred to as “Percep-
tron.” With significant advancements in computing power, brain 
neural networks have also become more complex, evolving into 
widely used DL models, such as deep neural networks and CNN 
(Figure 2).

DL is especially helpful when handling big data sources, such as 
EHRs, because it is less dependent on feature engineering or vari-
able selection. Overall, DL is compelling in image recognition26) 
and modeling disease onset27) using temporal relations among 
events. DL models can predict incident HF by analyzing the tem-
poral relationships among a large number of evolving variables 
such as comorbidities, physiological measurements, laboratory 
indices, medication prescriptions, and invasive procedures.28)

13

Role of AI in Heart Failure

https://doi.org/10.36628/ijhf.2023.0050https://e-heartfailure.org

Machine learning

Supervised
learning

Classification Regression Clustering Dimensionality
reduction Classification

Naïve Bayes AdaBoost Gaussian mixture
model Autoencoders Co-training

Nearest neighbor Bayesian network Hidden markov
model t-SNE Multi-view learning

Neural networks Neural networks Neural networks UMAP S3VM

Regression

Support vector
machine

Linear regression,
GLM

K-Means,
K-Medoids,

Fuzzy C-Means

Principal
component

analysis
Label propagation Multi-instance

regression

Discriminant
analysis SVR, GPR Hierarchical

Linear
discriminant

analysis
Self-training Transductive

regression

Unsupervised
learning

Semi-supervised
learning

Figure 1. Classification of machine learning. 
GLM = generalized linear model; SVR = support vector regression; GPR = ground penetrating radar; t-SNE = t-Distributed Stochastic Neighbor Embedding; UMAP 
= Uniform Manifold Approximation and Projection; S3VM = Semi-Supervised Support Vector Machines.

<Perceptron> <Neural network> <Deep neural network (DNN)>

Input layer
Hidden layer 1 Hidden layer 2

Output layer

Figure 2. Evolution of deep learning.



Recently, generative AI has emerged as a great innovation in the 
domain of digital health (Figure 3). Generative AI is an AI that can 
generate novel content, such as creating unique and high-quality 
images or original writing, rather than solving traditional regres-
sion or classification problems.29) For example, ChatGPT, which 
was released to the general public about a year ago, can efficiently 
understand queries from humans and responds to complex ques-
tions, and even create a script or a source code. Its versatile ap-
plications have far-reaching implications for improving patient 
care and advancing medical research. One of the key applications 
of generative AI is in the medical imaging. Utilizing advanced al-
gorithms such as Generative Adversarial Networks (GANs) and 
Variational Autoencoders, these models excel in generating syn-
thetic medical images, including X-ray, computed tomography, 
and magnetic resonance images. As a result, they facilitate the 
development of more accurate and robust medical imaging sys-
tems.30) Research was conducted to find if an ML model could 
correctly capture the characteristics of congestive heart failure 
(CHF).31) Unlike other diseases, such as lung cancer, where the 
characteristics can be found in the local area, CHF characteris-
tics are widespread, making them difficult to detect. The authors 
have created a synthesized image utilizing the Wasserstein GAN 
model, by subtracting the features from the healthy image with 
the diseased image, and adding them to the original image. Veri-
fied by both ML model and radiologist, the model has well reflect-
ed the features of CHF in the synthesized image, proving both 
the performance of the model and the usability of generative AI 
model. Additionally, the digitization of EHRs benefits from gen-
erative AI, particularly in the context of natural language process-
ing. These models proficiently generate and summarize patient 
notes, extract structured information from unstructured clini-
cal text, and automate data entry into EHR systems, ultimately 
saving valuable time for healthcare professionals.32)

Diagnosis of HF
Even for HF specialists, correctly diagnosing HF can be challeng-
ing because it is a complex syndrome caused by both structur-
al and functional cardiac disorders rather than a single disease 

entity. A classic example is leg edema, a common symptom of 
right-sided heart congestion. However, it can also develop in 
numerous alternative conditions, such as chronic venous in-
sufficiency, chronic kidney disease, and drug side effects. Con-
sequently, in clinical practice, many patients are misdiagnosed 
with HF and vice versa. In addition, contemporary physicians 
face difficulties in keeping up with the rapidly evolving scientific 
evidence, new medications, time constraints, and complexity of 
HF management guidelines, particularly in outpatient clinics. AI 
algorithms could help physicians identify HF in at-risk patients 
early and develop an AI-Clinical Decision Support System (AI-
CDSS) (Figure 4).23,33-35) AI-CDSS is a scalable and flexible medical 
assistant platform for different types of diseases. AI-CDSS con-
sists of a total of 5 layers: Data Acquisition and Persistence Layer, 
Context Recognition and Monitoring Layer, Knowledge Acquisi-
tion and Inferencing Layer, Engineering Support Layer, and User 
Interface Management Layer. The third layer, Knowledge Acquisi-
tion and Inferencing Layer, creates hybrid knowledge models by 
combining rule generated from data such as images and text, and 
with rules created by experts and automatically evolve knowledge 
over time. Choi et al.35) developed and evaluated the diagnostic ac-
curacy of the AI-CDSS for HF. It demonstrated a remarkable diag-
nostic accuracy of 98% for HF diagnosis, which was higher than 
that of non-HF specialists (76%). This suggests that the AI-CDSS 
could prove particularly useful for diagnosing HF, especially in 
situations where access to HF specialists is limited.

ECG is a non-invasive and simple diagnostic tool that is widely 
used in health checkups. Previous studies have shown a signifi-
cant association between HF and ECG.36-40) Attia et al.38) showed 
that the application of AI to ECG can be a powerful screening tool 
to identify left ventricular dysfunction in asymptomatic individu-
als. To achieve high accuracy, Kwon et al.41) analyzed 55,163 ECGs 
of 22,765 patients and developed a deep-learning algorithm for 
ECG-based HF identification. Compared to logistic regression 
and random forest ML algorithms, the DL algorithm showed 
superior effectiveness in identifying HF with a reduced ejection 
fraction (area under the curve, 0.843; 95% confidence interval, 
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Figure 3. Stages of AI for HF. 
AI = artificial intelligence; HF = heart failure; ML = machine learning.



0.840–0.845). In addition, the DL model applied to ECG was 
shown to have a high performance in the detection of HF with 
preserved ejection fraction (HFpEF).39,42)

Prediction of HF outcomes
HF is the leading cause of hospitalization in people aged 65 years 
and older.43) Moreover, patients with HF have a high risk of re-
admission, especially immediately after discharge.44) Therefore, 
risk stratification is important for HF, and ML can be particularly 
valuable in predicting readmission for these patients. Golas et 
al.45) showed that DL techniques outperformed traditional tech-
niques in predicting 30-day readmission in patients with HF. 
Furthermore, Kwon et al.46) showed that a DL-based algorithm 
predicted in-hospital mortality and long-term mortality more 
accurately than the existing scores, including the Get with the 
Guidelines-Heart Failure Score (GWTG) and Meta-Analysis 
Global Group for Heart Failure (MAGGIC) score. This might be 
because DL algorithms do not restrict the number of input or fea-
tures without limiting to those with established associations or 
biologically plausible rationales.

Cardiac monitoring data can be used to develop risk prediction al-
gorithms. In a cohort study of 900 patients, data from implanted 

cardiac resynchronization therapy (CRT) were collected.47) The 
alert algorithm used heart sounds, respiratory rate, tidal volume, 
heart rate, and patient activity to provide a sensitive and timely 
predictor of impending HF decompensation.

Classification of HF phenotypes and treatment
The present HF classification may be enhanced using ML. Phe-
notype mapping was performed in a prospective trial with 397 
ambulatory patients with HFpEF using ML algorithms and data 
from EHRs.48) A novel classification method for HFpEF was cre-
ated using this technique, which grouped study participants into 
phenotypes based on their clinical traits, echocardiographic pa-
rameters, ECG, invasive hemodynamics, and outcomes. Anoth-
er unsupervised ML analysis of 1,693 hospitalized patients with 
HF across the left ventricular ejection fraction (LVEF) spectrum 
identified 6 distinct phenogroups based on the common comor-
bidities: coronary artery disease, valvular heart disease, atrial 
fibrillation, chronic obstructive pulmonary disease, obstructive 
sleep apnea, or a few comorbidities.49) This grouping stratified 
the cardiovascular risk more effectively than LVEF.

ML algorithms can be used to improve HF treatment by assessing 
the heterogeneity of the response to HF therapies. Ahmad et al.50) 
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Figure 4. Hybrid AI-CDSS (expert system and machine learning) for diagnosis of heart failure. 
AI-CDSS = Artificial Intelligence-Clinical Decision Support System; HF = heart failure; ECG = electrocardiography; UI = user interface.



studied 44,886 patients with HF in the Swedish HF registry, and 
utilized ML to classify patients into 4 subgroups based on their 
response to therapeutics and 1-year survival rates. This stratifi-
cation allowed the identification of those most likely to benefit 
from guideline-directed medical therapy.51) ML can be used to 
prioritize patients who are most likely to benefit from interven-
tions to optimize evidence-based therapies.52) Moreover, ML 
algorithms can assist clinicians in determining optimal sequenc-
ing and dosing of evidence-based therapies.53)

Furthermore, ML has a potential role in optimizing patient se-
lection for HF device therapy. In general, one-third of patients 
with HF are non-responders to CRT.54) A post-hoc analysis of the 
Multicenter Automatic Defibrillator Implantation Trial with CRT 
demonstrated that ML algorithms, by integrating clinical param-
eters and cardiac cycle imaging data, could classify a phenotyp-
ically heterogeneous HF cohort into 4 distinct phenotypes, thus 
potentially optimizing the response rate to CRT.55) Implantable 
cardioverter defibrillators (ICDs) reduce the risk of sudden cardiac 
death in patients with HF. One study showed that unsupervised 
ML-based phenomapping could identify distinct phenotype sub-
groups in patients with clinically heterogeneous HF receiving sec-
ondary prophylactic ICD therapy, thus aiding the implementation 
of personalized medicine for these patients.56) Shakibfar et al.57) re-
vealed that ML using daily summaries of ICD measurements in the 
absence of clinical information could predict the short-term risk 
of electrical storms. In addition, a DL model can assist in selecting 
patients with HF that are eligible for subcutaneous ICD.58,59)

Multiple data sources, remote monitoring, and 
wearable devices
AI serves as an essential tool to help physicians improve their clin-
ical judgment and achieve precise diagnoses of diseases such as 
HF.60) To detect and diagnose HF, multiple data sources (e.g., ECG, 
EHRs, and imaging data [echocardiography and cardiac magnetic 
resonance imaging]) are integrated, and further AI algorithms are 
developed to improve the diagnostic accuracy. Ongoing research is 
focused on areas such as ECG analysis, natural language process-
ing for EHR data mining, and echocardiography image analysis. 
Cho et al.61) showed that HF with a reduced ejection fraction could 
be screened not only with a 12-lead ECG, but also with a single-lead 
ECG performed by a wearable device using an AI algorithm. By in-
corporating such algorithms, AI can be of great assistance in ana-
lyzing raw imaging data from cardiac imaging techniques.60)

With the increasing amount of data from remote monitoring 
and wearable devices, the role of AI is expanding.62) Kwon et al.63) 
showed that an AI-enabled smartwatch with a 2-lead ECG detected 
HF with reduced ejection fraction with acceptable performance. 

The LINK-HF (Multisensor Non-invasive Remote Monitoring for 
Prediction of Heart Failure Exacerbation) study evaluated the per-
formance of a personalized analysis platform using continuous 
data streams to predict rehospitalization after HF admission.64) 
This study showed that physiological telemetry from a wearable 
sensor could provide accurate early detection of impending rehos-
pitalization. In the future, the use of wearable devices or remote 
monitoring is expected to enable the earlier detection of HF.

LIMITATIONS OF AI IN HF

However, there are several limitations in the widespread use of 
AI in cardiovascular medicine. Dichotomy and improper cali-
bration are recognized issues in ML techniques based on AI.23) 
The performance of ML models can be compromised by inaccu-
rate or missing training data.65) This is especially true when ML 
algorithms rely on continuous data inputs, such as EHRs. For 
accurate predictions, data must be cleansed and validated by de-
tecting out-of-range values and skewness.65) Missing data can be 
filled in using ML algorithms and techniques while maintaining 
the algorithm performance.66)

In addition, an obvious situation in visual-based diagnosis and 
predictive tasks (e.g., segmentation of the left ventricle endocar-
dium, epicardium, and left atrium regions in echocardiography 
for providing fine-grained cardiac information) is the limited 
availability of well-annotated imaging data owing to expensive 
labor costs and time consumption. Furthermore, ML and DL al-
gorithms are vulnerable to domain shift issues, wherein diagnos-
tic or predictive outcomes may be adversely affected by inherent 
differences in distribution between the trained and applied data-
sets (e.g., those collected and combined from various hospitals 
with different configurations of data-capturing machines). Thus, 
external validation is crucial in medical AI.

Another drawback is the opaque reasoning and lack of explain-
ability that underlie an ML model’s output of a specific pre-
diction, especially when using DL algorithms because many 
physicians are skeptical of recommendations generated by a 
“black box” algorithm. False prediction due to wrong data based 
training rises a critical problem in the medical field. In an im-
age-based prediction, a slight manipulation of an image or noise 
leads to a different conclusion,67-69) and in text-based prediction, 
hallucination problem arises that the DL algorithm believes the 
prediction is correct, which is misled by wrong input data.70,71) In 
addition, the failure to evaluate the clinical impact of ML algo-
rithms in prospective studies, which makes the benefits of ML 
approaches hypothetical, is one of the biggest obstacles to their 
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adoption.9) There is an increasing need for prospective AI valida-
tion studies to address these limitations. Lastly, there have been 
recent issues with the use of patient data, particularly protected 
health information.

CONCLUSION

Nowadays, big data approaches, AI, ML, and DL are widely used 
in the field of HF. AI algorithms can help in the diagnosis and 
classification of HF and predict the prognosis and therapeutic 
response. Various data, including ECG, echocardiography, and 
EHRs, are used in AI. In addition, the integration of data from 
remote monitoring and wearable devices has expanded the po-
tential applications of AI in HF. The incorporation of AI tools 
is expected to revolutionize HF management and significantly 
impact patient outcomes, thereby enabling more precise and 
personalized care of patients with HF (Figure 5).
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