• Title/Summary/Keyword: Diagnostic Prediction

Search Result 214, Processing Time 0.023 seconds

A Study on the Diagnosis of the Centrifugal Pump by the Intelligent Diagnostic Method (지능진단기법에 의한 원심펌프의 고장진단에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-35
    • /
    • 2003
  • The rotating machineries always generate harmonic frequencies of their own rotating speed, and increment of vibration amplitude affects to the equipments which connected to the vibrational source and causes industrial calamities. The life cycle of equipments can be extended and damages to the human beings could be prevented by identifying the cause of malfunctions through prediction of the increment of vibration and records of vibrational history. In this study, therefore, diagnostic expert algorithm for the centrifugal pump is developed by integrating fuzzy inference method and signal processing techniques. And the validity of the developed diagnostic system is examined via various computer simulations.

Mathematical Preparedness Predicts College Grades in Physics Better than Physics Preparedness: the Predictive Validity of the Mathematical Diagnostic Test on the Freshmen's Physics Grades (물리보다 수학을 잘 해야 물리를 잘 한다: 입학 전 수학진단점수의 일반물리학 성취도 예측타당성 검증)

  • Shin, Yunkyoung;Park, Kyuyeol;Lee, Ah-reum;Jung, Jongwon
    • Journal of Engineering Education Research
    • /
    • v.22 no.4
    • /
    • pp.22-31
    • /
    • 2019
  • This study aims to elucidate the relationship between physics and mathematics to predict achievement for the college level of engineering courses. For the last 4 years, more than 3,000 engineering college freshmen of this study took the diagnostic tests on three subjects, which were physics, mathematics, and chemistry before enrollment. We studied how strongly these diagnostic scores can predict each general college course grades. The correlation between the physics diagnostic scores and the course grades in physics was .264, which was significantly lower than the correlation between the mathematics scores and the physics grades, .311. This stronger prediction of the mathematical diagnostic scores for the general course grades was not found when predicting the grades in chemistry. We therefore conclude that mathematical preparation can unexpectedly predict future achievement in physics better than physics preparation due to the academic interrelationships between mathematics and physics.

Diffusion-weighted Magnetic Resonance Imaging for Predicting Response to Chemoradiation Therapy for Head and Neck Squamous Cell Carcinoma: A Systematic Review

  • Sae Rom Chung;Young Jun Choi;Chong Hyun Suh;Jeong Hyun Lee;Jung Hwan Baek
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.649-661
    • /
    • 2019
  • Objective: To systematically review the evaluation of the diagnostic accuracy of pre-treatment apparent diffusion coefficient (ADC) and change in ADC during the intra- or post-treatment period, for the prediction of locoregional failure in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Ovid-MEDLINE and Embase databases were searched up to September 8, 2018, for studies on the use of diffusion-weighted magnetic resonance imaging for the prediction of locoregional treatment response in patients with HNSCC treated with chemoradiation or radiation therapy. Risk of bias was assessed by using the Quality Assessment Tool for Diagnostic Accuracy Studies-2. Results: Twelve studies were included in the systematic review, and diagnostic accuracy assessment was performed using seven studies. High pre-treatment ADC showed inconsistent results with the tendency for locoregional failure, whereas all studies evaluating changes in ADC showed consistent results of a lower rise in ADC in patients with locoregional failure compared to those with locoregional control. The sensitivities and specificities of pre-treatment ADC and change in ADC for predicting locoregional failure were relatively high (range: 50-100% and 79-96%, 75-100% and 69-95%, respectively). Meta-analytic pooling was not performed due to the apparent heterogeneity in these values. Conclusion: High pre-treatment ADC and low rise in early intra-treatment or post-treatment ADC with chemoradiation, could be indicators of locoregional failure in patients with HNSCC. However, as the studies are few, heterogeneous, and at high risk for bias, the sensitivity and specificity of these parameters for predicting the treatment response are yet to be determined.

Prediction of Metal Ion Binding Sites in Proteins from Amino Acid Sequences by Using Simplified Amino Acid Alphabets and Random Forest Model

  • Kumar, Suresh
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.162-169
    • /
    • 2017
  • Metal binding proteins or metallo-proteins are important for the stability of the protein and also serve as co-factors in various functions like controlling metabolism, regulating signal transport, and metal homeostasis. In structural genomics, prediction of metal binding proteins help in the selection of suitable growth medium for overexpression's studies and also help in obtaining the functional protein. Computational prediction using machine learning approach has been widely used in various fields of bioinformatics based on the fact all the information contains in amino acid sequence. In this study, random forest machine learning prediction systems were deployed with simplified amino acid for prediction of individual major metal ion binding sites like copper, calcium, cobalt, iron, magnesium, manganese, nickel, and zinc.

A Hybrid Mod K-Means Clustering with Mod SVM Algorithm to Enhance the Cancer Prediction

  • Kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In Recent years the way we analyze the breast cancer has changed dramatically. Breast cancer is the most common and complex disease diagnosed among women. There are several subtypes of breast cancer and many options are there for the treatment. The most important is to educate the patients. As the research continues to expand, the understanding of the disease and its current treatments types, the researchers are constantly being updated with new researching techniques. Breast cancer survival rates have been increased with the use of new advanced treatments, largely due to the factors such as earlier detection, a new personalized approach to treatment and a better understanding of the disease. Many machine learning classification models have been adopted and modified to diagnose the breast cancer disease. In order to enhance the performance of classification model, our research proposes a model using A Hybrid Modified K-Means Clustering with Modified SVM (Support Vector Machine) Machine learning algorithm to create a new method which can highly improve the performance and prediction. The proposed Machine Learning model is to improve the performance of machine learning classifier. The Proposed Model rectifies the irregularity in the dataset and they can create a new high quality dataset with high accuracy performance and prediction. The recognized datasets Wisconsin Diagnostic Breast Cancer (WDBC) Dataset have been used to perform our research. Using the Wisconsin Diagnostic Breast Cancer (WDBC) Dataset, We have created our Model that can help to diagnose the patients and predict the probability of the breast cancer. A few machine learning classifiers will be explored in this research and compared with our Proposed Model "A Hybrid Modified K-Means with Modified SVM Machine Learning Algorithm to Enhance the Cancer Prediction" to implement and evaluated. Our research results show that our Proposed Model has a significant performance compared to other previous research and with high accuracy level of 99% which will enhance the Cancer Prediction.

A Study on the Neural Network Diagnostic System for Rotating Machinery Failure Diagnosis (신경망을 이용한 회전축의 이상상태 진단에 관한 연구)

  • 유송민;박상신
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • In this study, a neural network based diagnostic system of a rotating spindle system supported by ball bearings was introduced. In order to create actual failure situations, two exemplary abnormal status were made. Out of several possible data source locations, ten measurement spots were chosen. In order to discriminate multiple abnormal status, a neural network system was introduced using back propagation algorithm updating connecting weight between each nodes. In order to find the optimal structure of the neural network system reducing the information sources, magnitude of the weight of the network was referred. Hinton diagram was used to visually inspect the least sensitive weight connecting between input and hidden layers. Number of input node was reduced from 10 to 7 and prediction rate was increased to 100%.

TANFIS Classifier Integrated Efficacious Aassistance System for Heart Disease Prediction using CNN-MDRP

  • Bhaskaru, O.;Sreedevi, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.171-176
    • /
    • 2022
  • A dramatic rise in the number of people dying from heart disease has prompted efforts to find a way to identify it sooner using efficient approaches. A variety of variables contribute to the condition and even hereditary factors. The current estimate approaches use an automated diagnostic system that fails to attain a high level of accuracy because it includes irrelevant dataset information. This paper presents an effective neural network with convolutional layers for classifying clinical data that is highly class-imbalanced. Traditional approaches rely on massive amounts of data rather than precise predictions. Data must be picked carefully in order to achieve an earlier prediction process. It's a setback for analysis if the data obtained is just partially complete. However, feature extraction is a major challenge in classification and prediction since increased data increases the training time of traditional machine learning classifiers. The work integrates the CNN-MDRP classifier (convolutional neural network (CNN)-based efficient multimodal disease risk prediction with TANFIS (tuned adaptive neuro-fuzzy inference system) for earlier accurate prediction. Perform data cleaning by transforming partial data to informative data from the dataset in this project. The recommended TANFIS tuning parameters are then improved using a Laplace Gaussian mutation-based grasshopper and moth flame optimization approach (LGM2G). The proposed approach yields a prediction accuracy of 98.40 percent when compared to current algorithms.

The Prevention Countermeasure against Breakdown of GIS using the Preventive Diagnostic Technology (예방진단기술을 활용한 GIS 고장예방대책)

  • Choi, Jong-Soo;Kim, Jong-Gu;Park, Jun-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.423-427
    • /
    • 2009
  • In the circumstances which a highly reliable operation in electric power facilities of extra high voltage and large capacity is needed, the importance of a preventive diagnostic technology is growing large day and day. The settlement of a preventive diagnostic technology for optimization and efficient management on the electric power facilities like GIS enable the reduce of repair fee, the improvement of safety and the systematic management of electric power facilities. The remaining life prediction of facilities will play a decisive role as a core technology of a preventive diagnostics in the future. And so it is necessary a continuous research and concern for the development of a preventive diagnostic technology hereafter.

  • PDF

A Study on the Implementation of Intelligent Diagnosis System for Motor Pump (모터펌프의 지능형 진단시스템 구현에 관한 연구)

  • Ahn, Jae Hyun;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.87-91
    • /
    • 2019
  • The diagnosis of the failure for the existing electrical facilities was based on regular preventive maintenance, but this preventive maintenance was limited in preventing a lot of cost loss and sudden system failure. To overcome these shortcomings, fault prediction and diagnostic techniques are critical to increasing system reliability by monitoring electrical installations in real time and detecting abnormal conditions in the facility early. As the performance and quality deterioration problem occurs frequently due to the increase in the number of users of the motor pump, the purpose is to build an intelligent control system that can control the motor pump to maximize the performance and to improve the quality and reliability. To this end, a vibration sensor, temperature sensor, pressure sensor, and low water level sensor are used to detect vibrations, temperatures, pressures, and low water levels that can occur in the motor pump, and to build a system that can identify and diagnose information to users in real time.

THE PREDICTION OF POSTSURGICAL SOFT-TISSUE PROFILE CHANCES ASSOCIATED WITH SURGICAL CORRECTION OF THE PROGNATHIC MANDIBLE BY STANDARDIZED FACIAL PHOTOSURGERY (하악전돌증 환자의 실물 측모사진을 이용한 악교정 수술후 연조직변화 예측에 관한 연구)

  • Jin, Keun Ho;Hong, Sung-Joon
    • The korean journal of orthodontics
    • /
    • v.22 no.4 s.39
    • /
    • pp.855-868
    • /
    • 1992
  • This study was designed to test the possibility of using a standardized lateral facial photographs as a clinical tool which produce the prediction of postsurgical soft-tissue profile changes associated with surgical correction in skeletal CIII patients. The number of the patients involved in this study were 27 in total, including 11 male patients and 16 female patients. A practical method to the utilization of presurgical photo prediction for mandibular prognathic patients has been presented. To predict postoperative facial appearance, montage photographs were superimposed on standard facial reference photos taken preoperatively. Within the limitations of its technology, postoperative predictions generated by this method were of sufficient accuracy, especially mandible and chin area, for clinical use. In addition, they provide valuable communication and diagnostic information which may be used in formulating treatment plan in cases requiring corrective orthognathic surgery. But, the lip changes were somewhat exaggerated by photo prediction. Consequently, the photo prediction seems suitable for planning profile changes in orthognathic surgery that include mobilization of one main mandibular fragment. Futher investigations are needed to determine whether changes of soft-tissues and hard-tissues are sufficiently reproducible so that more meaningful predictive values can be established.

  • PDF