• Title/Summary/Keyword: Diagnosis Model Learning

Search Result 275, Processing Time 0.025 seconds

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

A Model for diagnosing Students′Misconception using Fuzzy Cognitive Maps and Fuzzy Associative Memory (퍼지 인지 맵과 퍼지 연상 메모리를 이용한 오인진단 모델)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This paper presents a model for diagnosing students'learning misconceptions in the domain of heat and temperature using fuzzy cognitive maps(FCM) and fuzzy associative memory(FAM). In a model for diagnosing learning misconceptions. an FCM can represent with cause and effect between preconceptions and misconceptions that students have about scientific phenomenon. An FAM which represents a neurallike memory for memorizing causal relationships is used to diagnose causes of misconceptions in learning. This study will present a new method for more autonomous and intelligent system than a model to diagnose misconceptions that was being done with classical methods in learning and may contribute as an intelligent tutoring system for learning diagnosis within various educational contexts.

  • PDF

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

A Study on Diabetes Management System Based on Logistic Regression and Random Forest

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • In the quest for advancing diabetes diagnosis, this study introduces a novel two-step machine learning approach that synergizes the probabilistic predictions of Logistic Regression with the classification prowess of Random Forest. Diabetes, a pervasive chronic disease impacting millions globally, necessitates precise and early detection to mitigate long-term complications. Traditional diagnostic methods, while effective, often entail invasive testing and may not fully leverage the patterns hidden in patient data. Addressing this gap, our research harnesses the predictive capability of Logistic Regression to estimate the likelihood of diabetes presence, followed by employing Random Forest to classify individuals into diabetic, pre-diabetic or nondiabetic categories based on the computed probabilities. This methodology not only capitalizes on the strengths of both algorithms-Logistic Regression's proficiency in estimating nuanced probabilities and Random Forest's robustness in classification-but also introduces a refined mechanism to enhance diagnostic accuracy. Through the application of this model to a comprehensive diabetes dataset, we demonstrate a marked improvement in diagnostic precision, as evidenced by superior performance metrics when compared to other machine learning approaches. Our findings underscore the potential of integrating diverse machine learning models to improve clinical decision-making processes, offering a promising avenue for the early and accurate diagnosis of diabetes and potentially other complex diseases.

Indirect Inspection Signal Diagnosis of Buried Pipe Coating Flaws Using Deep Learning Algorithm (딥러닝 알고리즘을 이용한 매설 배관 피복 결함의 간접 검사 신호 진단에 관한 연구)

  • Sang Jin Cho;Young-Jin Oh;Soo Young Shin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2023
  • In this study, a deep learning algorithm was used to diagnose electric potential signals obtained through CIPS and DCVG, used indirect inspection methods to confirm the soundness of buried pipes. The deep learning algorithm consisted of CNN(Convolutional Neural Network) model for diagnosing the electric potential signal and Grad CAM(Gradient-weighted Class Activation Mapping) for showing the flaw prediction point. The CNN model for diagnosing electric potential signals classifies input data as normal/abnormal according to the presence or absence of flaw in the buried pipe, and for abnormal data, Grad CAM generates a heat map that visualizes the flaw prediction part of the buried pipe. The CIPS/DCVG signal and piping layout obtained from the 3D finite element model were used as input data for learning the CNN. The trained CNN classified the normal/abnormal data with 93% accuracy, and the Grad-CAM predicted flaws point with an average error of 2m. As a result, it confirmed that the electric potential signal of buried pipe can be diagnosed using a CNN-based deep learning algorithm.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

Self-supervised Meta-learning for the Application of Federated Learning on the Medical Domain (연합학습의 의료분야 적용을 위한 자기지도 메타러닝)

  • Kong, Heesan;Kim, Kwangsu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • Medical AI, which has lately made significant advances, is playing a vital role, such as assisting clinicians with diagnosis and decision-making. The field of chest X-rays, in particular, is attracting a lot of attention since it is important for accessibility and identification of chest diseases, as well as the current COVID-19 pandemic. However, despite the vast amount of data, there remains a limit to developing an effective AI model due to a lack of labeled data. A research that used federated learning on chest X-ray data to lessen this difficulty has emerged, although it still has the following limitations. 1) It does not consider the problems that may occur in the Non-IID environment. 2) Even in the federated learning environment, there is still a shortage of labeled data of clients. We propose a method to solve the above problems by using the self-supervised learning model as a global model of federated learning. To that aim, we investigate a self-supervised learning methods suited for federated learning using chest X-ray data and demonstrate the benefits of adopting the self-supervised learning model for federated learning.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.9-17
    • /
    • 2023
  • In this paper, we propose a one-class vibration anomaly detection system for bearing defect diagnosis. In order to reduce the economic and time loss caused by bearing failure, an accurate defect diagnosis system is essential, and deep learning-based defect diagnosis systems are widely studied to solve the problem. However, it is difficult to obtain abnormal data in the actual data collection environment for deep learning learning, which causes data bias. Therefore, a one-class classification method using only normal data is used. As a general method, the characteristics of vibration data are extracted by learning the compression and restoration process through AutoEncoder. Anomaly detection is performed by learning a one-class classifier with the extracted features. However, this method cannot efficiently extract the characteristics of the vibration data because it does not consider the frequency characteristics of the vibration data. To solve this problem, we propose an AutoEncoder model that considers the frequency characteristics of vibration data. As for classification performance, accuracy 0.910, precision 1.0, recall 0.820, and f1-score 0.901 were obtained. The network design considering the vibration characteristics confirmed better performance than existing methods.

An Effectiveness Verification for Evaluating the Amount of WTCI Tongue Coating Using Deep Learning (딥러닝을 이용한 WTCI 설태량 평가를 위한 유효성 검증)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.226-231
    • /
    • 2019
  • A WTCI is an important criteria for evaluating an mount of patient's tongue coating in tongue diagnosis. However, Previous WTCI tongue coating evaluation methods is a most of quantitatively measuring ration of the extracted tongue coating region and tongue body region, which has a non-objective measurement problem occurring by exposure conditions of tongue image or the recognition performance of tongue coating. Therefore, a WTCI based on deep learning is proposed for classifying an amount of tonger coating in this paper. This is applying the AI deep learning method using big data. to WTCI for evaluating an amount of tonger coating. In order to verify the effectiveness performance of the deep learning in tongue coating evaluating method, we classify the 3 types class(no coating, some coating, intense coating) of an amount of tongue coating by using CNN model. As a results by testing a building the tongue coating sample images for learning and verification of CNN model, proposed method is showed 96.7% with respect to the accuracy of classifying an amount of tongue coating.

Development of an intelligent skin condition diagnosis information system based on social media

  • Kim, Hyung-Hoon;Ohk, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.241-251
    • /
    • 2022
  • Diagnosis and management of customer's skin condition is an important essential function in the cosmetics and beauty industry. As the social media environment spreads and generalizes to all fields of society, the interaction of questions and answers to various and delicate concerns and requirements regarding the diagnosis and management of skin conditions is being actively dealt with in the social media community. However, since social media information is very diverse and atypical big data, an intelligent skin condition diagnosis system that combines appropriate skin condition information analysis and artificial intelligence technology is necessary. In this paper, we developed the skin condition diagnosis system SCDIS to intelligently diagnose and manage the skin condition of customers by processing the text analysis information of social media into learning data. In SCDIS, an artificial neural network model, AnnTFIDF, that automatically diagnoses skin condition types using artificial neural network technology, a deep learning machine learning method, was built up and used. The performance of the artificial neural network model AnnTFIDF was analyzed using test sample data, and the accuracy of the skin condition type diagnosis prediction value showed a high performance of about 95%. Through the experimental and performance analysis results of this paper, SCDIS can be evaluated as an intelligent tool that can be used efficiently in the skin condition analysis and diagnosis management process in the cosmetic and beauty industry. And this study can be used as a basic research to solve the new technology trend, customized cosmetics manufacturing and consumer-oriented beauty industry technology demand.