• Title/Summary/Keyword: Diagnosis Model Learning

Search Result 279, Processing Time 0.028 seconds

Construction of Artificial Intelligence Training Platform for Multi-Center Clinical Research (다기관 임상연구를 위한 인공지능 학습 플랫폼 구축)

  • Lee, Chung-Sub;Kim, Ji-Eon;No, Si-Hyeong;Kim, Tae-Hoon;Yoon, Kwon-Ha;Jeong, Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.239-246
    • /
    • 2020
  • In the medical field where artificial intelligence technology is introduced, research related to clinical decision support system(CDSS) in relation to diagnosis and prediction is actively being conducted. In particular, medical imaging-based disease diagnosis area applied AI technologies at various products. However, medical imaging data consists of inconsistent data, and it is a reality that it takes considerable time to prepare and use it for research. This paper describes a one-stop AI learning platform for converting to medical image standard R_CDM(Radiology Common Data Model) and supporting AI algorithm development research based on the dataset. To this, the focus is on linking with the existing CDM(common data model) and model the system, including the schema of the medical imaging standard model and report information for multi-center research based on DICOM(Digital Imaging and Communications in Medicine) tag information. And also, we show the execution results based on generated datasets through the AI learning platform. As a proposed platform, it is expected to be used for various image-based artificial intelligence researches.

Multi-Class Classification Framework for Brain Tumor MR Image Classification by Using Deep CNN with Grid-Search Hyper Parameter Optimization Algorithm

  • Mukkapati, Naveen;Anbarasi, MS
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.101-110
    • /
    • 2022
  • Histopathological analysis of biopsy specimens is still used for diagnosis and classifying the brain tumors today. The available procedures are intrusive, time consuming, and inclined to human error. To overcome these disadvantages, need of implementing a fully automated deep learning-based model to classify brain tumor into multiple classes. The proposed CNN model with an accuracy of 92.98 % for categorizing tumors into five classes such as normal tumor, glioma tumor, meningioma tumor, pituitary tumor, and metastatic tumor. Using the grid search optimization approach, all of the critical hyper parameters of suggested CNN framework were instantly assigned. Alex Net, Inception v3, Res Net -50, VGG -16, and Google - Net are all examples of cutting-edge CNN models that are compared to the suggested CNN model. Using huge, publicly available clinical datasets, satisfactory classification results were produced. Physicians and radiologists can use the suggested CNN model to confirm their first screening for brain tumor Multi-classification.

Toward a grey box approach for cardiovascular physiome

  • Hwang, Minki;Leem, Chae Hun;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.305-310
    • /
    • 2019
  • The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly performed by humans. Specifically, various ML techniques in cardiovascular medicine are being developed and improved at unprecedented speed. The benefits of using ML for various tasks is that the inner working mechanism of the system does not need to be known, which can prove convenient in situations where determining the inner workings of the system can be difficult. The computation speed is also often higher than that of the traditional mathematical models. The limitations with ML are that it inherently leads to an approximation, and special care must be taken in cases where a high accuracy is required. Traditional mathematical models are, however, constructed based on underlying laws either proven or assumed. The results from the mathematical models are accurate as long as the model is. Combining the advantages of both the mathematical models and ML would increase both the accuracy and efficiency of the simulation for many problems. In this review, examples of cardiovascular physiome where approaches of mathematical modeling and ML can be combined are introduced.

Approach to diagnosing multiple abnormal events with single-event training data

  • Ji Hyeon Shin;Seung Gyu Cho;Seo Ryong Koo;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.558-567
    • /
    • 2024
  • Diagnostic support systems are being researched to assist operators in identifying and responding to abnormal events in a nuclear power plant. Most studies to date have considered single abnormal events only, for which it is relatively straightforward to obtain data to train the deep learning model of the diagnostic support system. However, cases in which multiple abnormal events occur must also be considered, for which obtaining training data becomes difficult due to the large number of combinations of possible abnormal events. This study proposes an approach to maintain diagnostic performance for multiple abnormal events by training a deep learning model with data on single abnormal events only. The proposed approach is applied to an existing algorithm that can perform feature selection and multi-label classification. We choose an extremely randomized trees classifier to select dedicated monitoring parameters for target abnormal events. In diagnosing each event occurrence independently, two-channel convolutional neural networks are employed as sub-models. The algorithm was tested in a case study with various scenarios, including single and multiple abnormal events. Results demonstrated that the proposed approach maintained diagnostic performance for 15 single abnormal events and significantly improved performance for 105 multiple abnormal events compared to the base model.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

A Consulting Case Study on the Small Start-up through using the Business Model Canvas (소규모 창업기업의 사업진단과 컨설팅을 위한 비즈니스모델캔버스의 활용 사례연구)

  • Pyo, Won-Ji;Ha, Hwan-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.561-569
    • /
    • 2015
  • Many start-ups have many realistic hardships in getting management diagnosis about whether their business model are properly going. For this reason, there is the need for an easy and simple method that makes it possible to conduct a strategic management through the analysis and management diagnosis of the business model. The Business Model Canvas(BMC) has been popularized as a tool to help entrepreneurs describe, design, challenge, invent and pivot their business model. This model gives a framework to describe the most important building blocks(9 blocks) of existing business. Entrepreneurs can make their own business analyses and craft their own solutions through using this model. In this study, we conducted consulting by using the BMC on the NARUATO which is a small start-up in the healthy food industry. This case study can use as a learning material for entrepreneurship education.

An SVM-based physical fatigue diagnostic model using speech features (음성 특징 파라미터를 이용한 SVM 기반 육체피로도 진단모델)

  • Kim, Tae Hun;Kwon, Chul Hong
    • Phonetics and Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.17-22
    • /
    • 2016
  • This paper devises a model to diagnose physical fatigue using speech features. This paper presents a machine learning method through an SVM algorithm using the various feature parameters. The parameters used include the significant speech parameters, questionnaire responses, and bio-signal parameters obtained before and after the experiment imposing the fatigue. The results showed that performance rates of 95%, 100%, and 90%, respectively, were observed from the proposed model using three types of the parameters relevant to the fatigue. These results suggest that the method proposed in this study can be used as the physical fatigue diagnostic model, and that fatigue can be easily diagnosed by speech technology.

The developing strategy for School Health Education (학교보건교육의 개발 전략)

  • 이규성
    • Korean Journal of Health Education and Promotion
    • /
    • v.7 no.2
    • /
    • pp.22-31
    • /
    • 1990
  • The Purpose of this study was to define the School Health Education Concepts, to establish the learning objectives and contents for school health education, and to diagnose the phenomenal aspects related to current school health Education in Korea. The results of its diagnosis indicated that the Education Ministry had never had any open opportunities for the teachers to get health education licence, and. universities had never issued health education teacher′s licence to the perspective students in Korea. Under such condition, there was "Korean nursing teacher′s association" for school health education, which had lectures, for two to three years, in order to learn how to develop, teach and evaluate the school health program. Currently, School boards in cities recommended that all nursing teachers should teach school health education in classes for six hours in a week without any fixed health program. Also, There was only "Korean Society for Health Education" for the purpose of dealing with school health education, which had been publishing annual journal. This study demonstrated how to develop school health education curriculum, which composed of the methods for needs assessment and PRECEDE Model(Predisposing, Reinforcing, and Enabling Causes in Educational Diagnosis and Evaluation).

  • PDF

Fault Diagnosis of Nonlinear Systems Based on Dynamic Threshold Using Neural Network (신경회로망을 이용한 동적 문턱값에 의한 비선형 시스템의 고장진단)

  • Soh, Byung-Seok;Lee, In-Soo;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.968-973
    • /
    • 2000
  • Fault diagnosis plays an important role in the performance and safe operation of many modern engineering plants. This paper investigates the problem of fault detection using neural networks in dynamic systems. A general framework for constructing a nonlinear fault detection scheme for nonlinear dynamic systems containing modeling uncertaintly is proposed. The main idea behind the proposed approach is to monitor the physical system with an off -line learning neural network and then to approximate the upper and lower thresholds of acceleration of the nominal system with the model-based threshold(ThMB) method, The performance of the proposed fault detection scheme is investigated through simulations of a pendulum with uncertainty.

  • PDF

An Application of Decision Tree Method for Fault Diagnosis of Induction Motors

  • Tran, Van Tung;Yang, Bo-Suk;Oh, Myung-Suck
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.54-59
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data.

  • PDF