• Title/Summary/Keyword: Diagenesis

Search Result 65, Processing Time 0.021 seconds

A Study on the Conservation of the Seated Stone Buddha and Its Scientific Characteristics (석조불좌상(石造佛坐像)의 보존과 과학적 특성 연구)

  • Jo, Yeontae
    • Conservation Science in Museum
    • /
    • v.12
    • /
    • pp.1-7
    • /
    • 2011
  • The seated stone Buddha(Bon5190) of National Museum of Korea initially consisted of some 90 fragments, making it difficult to guess its overall appearance. Under a restoration work which lasted four months, the fragments were joined together, giving shape to a seated Stone Buddha in Bhumisparsa(earth touching) mudra and an associated figure of Bodhisattva missing the face. The statue was made from a single stone block by digging out the center. Traces of lacquer coating and a gilded layer above the lacquer coat were found in various parts. Polarizing microscopy and XRD analysis revealed that the stone was zeolite, a mineral formed through diagenesis of volcanic glassy ashes from trachytic tuff (Nuldaeri) and dacitic tuff (Guryongpo). In Korea, zeolite deposit found mostly in Gyeongsangbuk-do, in places like Yeonil, Guryongpo, Gampo and Ulsan. The restored statue of seated Buddha proved very similar in appearance to the seated stone Buddha of Deoksa Temple in Cheongdo-gun, Gyeongsangbuk-do (housed in Yeongsanjeon Hall). The scroll inside the statue, containing information about the background and circumstances of creation of this Buddhist sculpture, indicates that the monk Seung-ho took part in it as the head sculptor-monk.

A Study on the Distribution and Property of Carbonaceous Materials in the Subsurface Sediments near the Imjin River (임진강변 퇴적층 내 탄소물질들의 분포 및 특성 연구)

  • Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.34-43
    • /
    • 2010
  • The fate of hydrophobic organic contaminants (HOCs) in ground water is highly affected by the distribution and property of the carbonaceous materials (CMs) in subsurface sediments. CMs in soils consist of organic matters (e.g., cellulose, fulvic acid, humic acid, humin, etc.) and black carbon such as char, soot, etc. The distribution and property of CMs are governed by source materials and geological evolution (e.g., diagenesis, catagenesis, etc.) of them. In this study, the distribution and property of CMs in subsurface sediments near the Imjin river in the Republic of Korea and HOC sorption property to the subsurface sediments were investigated. The organic carbon contents of sand and clay/silt layers were about 0.35% and 1.37%, respectively. The carbon contents of condensed form of CMs were about 0.13% and 0.45%, respectively. The existence of black carbon was observed using scanning electron microscopes with energy dispersive spectroscopy. The specific surface areas (SSA) of CMs in heavy fraction(HFrCM) measured with N2 were $35-46m^2/g$. However, SSAs of those HFrCM mineral fraction was only $1.6-4.3m^2/g$. The results of thermogravimetric analysis show that the mass loss of HFrCM was significant at $50-200^{\circ}C$ and $350-600^{\circ}C$ due to the degradation of soft form and condensed form of CMs, respectively. The trichloroethylene (TCE) sorption capacities of sand and clay/silt layers were similar to each other, and these values were also similar to oxidzed layer of glacially deposited subsurface sediments of the Chanute Air Force Base (AFB) in Rantoul, Illinois. However, these were 7-8 times lower than TCE sorption capacity of reduced layer of the Chanute AFB sediments. For accurate prediction of the fate of hydrophobic organic contaminants in subsurface sediments, continuous studies on the development of characterization methods for CMs are required.

The Geochemical Behaviour and Environmental Pollution of Pb, Zn, Mn and Cd in Interstitial Waters and Sediments from a Retention Pond along the A-71 Highway, France (프랑스 A-71고속도로변에 설치된 침전조에서 채취된 간극수와 퇴적물에 함유된 Pb, Zn, Mn 및 Cd의 지화학적 행동 및 오염에 관한 연구)

  • Lee, Pyeong-Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.341-352
    • /
    • 1997
  • Retention ponds have been dug along some of the motorways in France to minimize environmental pollution by keeping pollutants from spreading over the surrounding area. In order to study heavy metal pollution and diagenetic behaviour of sediments, eight core samples were collected from the bottom of a retention pond located along the A-71 motorway in Sologne. The metal concentrations in interstitial waters and extractable metal concentrations in sediment layers using sequential chemical extraction method were determined. The depth distributions of Pb, Zn and Cd concentrations in interstitial water and particulate sediments were studied, and distribution coefficients (KD) were also determined to investigate the environmental mobility of these elements. In addition. the index of geoaccumulation and the Fe-normalized enrichment factor were calculated to differentiate the natural accumulation from the anthropogenic pollution. The vertical concentration profiles of heavy metals in core sediments indicate that surface enrichments (0~2 cm) of Pb, Zn, Cd and organic carbon were always observed at each core sample, due to the early diagenesis. However, the major factor contributing to the accumulation of Cd at the sediment surface is attributed to the dissolution of Cd from polluted roadside soil during periods of rainstorms and its subsequent redeposition on the sediment surface after being carried to the retention pond. A comparison of the KD values indiactes that a decrease in the KD values for Pb and Zn was observed with depth while KD values for Cd increase. According to the KD values. the relative mobility of studied metals was determined as following: Mn>Zn>Cd>Pb, for the upper layer, and Mn>Cd>Zn>Pb, for the lower layers.

  • PDF

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF

Capping Treatment for the Reduction of Phosphorus Release from Contaminated Sediments of Lakes (호소퇴적물로부터 인 용출 저감을 위한 Capping 처리)

  • Kim, Seog-Ku;Lee, Mi-Kyung;Ahn, Jae-Hwan;Yun, Sang-Leen;Kim, So-Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.438-446
    • /
    • 2006
  • A lab-scale batch test was conducted to develop capping materials to reduce the sediment phosphorus in the stagnant water zone of Gyeongancheon in Paldang Lake. The mean grain size(Mz) of sediment in the investigated area was 7.7 ${\phi}$, which is very fine, and the contents of organic carbon($C_{org}$) was 2.4%, which is very high. For the phosphorous release experiment to select the optimal capping material, sand layer, powder-gypsum($CaSO_4{\cdot}2H_2O$), granule-gypsum, complex layer(gypsum+sand) and the control were compared and evaluated in the 150 L reactor for 45 days. In case of the capping with the sand, it was found that the phosphorous from the sediment could be reduced by around 50%. However, it was found that this caused the reduction of the dissolved oxygen in the water column(by less than 3 mg/L) due to the resuspension of sediment and the organic matter decomposition that comes from the generation of $CH_4$ gas in the 1 cm of the sand layer. Therefore, it is likely that the sand layer has to be thickener in case of the sand capping. Powder-gypsum and granule-Gypsum reduced phosphorous release by more than 80%. However, the concentration of ${SO_4}^{2-}$ in the water column increased, making it difficult to apply it to the drinking water protection zone. We developed Fe-Gypsum and $SiO_2$-gypsum materials to reduce the solubility of ${SO_4}^{2-}$. Powder-Gypsum creates the interception film that does not have any aperture on the sediment layer when it is combined with the water. However phosphorous release caused by the generation of $CH_4$ gas may happen at a time when the gypsum layer has the crack. Capping through the complex layer(granule-Gypsum+sand(1 cm)) found to be suitable for the drinking water protection zone because it was effective to prevent phosphorus release. Moreover, this leads to the lower solubility from the concentration of ${SO_4}^{2-}$ into the water column than the powder-Gypsum and granule-Gypsum. The addition of gypsum($CaSO_4{\cdot}2H_2O$) into the sediment can reduce the progress of methanogensis because fast early diagenesis and sufficient supply of ${SO_4}^{2-}$ to the sediment, stimulate the SRB(sulfate reducing bacteria) highly.

Occurrences and Physicochemical Properties of Japanese Bentonite Deposits (일본 벤토나이트 광상의 부존특성 및 광석의 물리화학적 특성)

  • Song Min-Sub;Koh Sang-Mo;Takagi Tetsuichi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.245-265
    • /
    • 2004
  • This study was to compare the geological occurrences and geneses of the Myogi, Tsukinuno, Dobuyama and Kawasaki bentonite deposits distributed in the Tertiary sedimentary basins of NE Japan, and to compare the mineralogical and physicochemical properties of their bentonites. The Japanese bentonite deposits are mainly distributed in the Green-tuff region which was formed in Neogene. The shape of ore body of the Myogi, Tsukinuno and Kawasaki deposits formed by the diagenesis are layered and stratiform. In contrast to this, the Dobuyama deposit formed by hydrothermal alteration shows the cone shape. The mineralization age of four deposits are 1.8 ~ 21 Ha from Early Miocene to Pliocene. The Dobuyama bentonite with the highest montmorillonite content shows the highest surface area, CEC, MB adsorption, and strengths. The Tsukinuno bentonite with a little high montmorillonite content is characterized by strong alkalinity, high viscosity and swelling. The Kawasaki bentonite, the Na-Ca mixed type, shows higher viscosity and swelling than the Ca-type Dobuyama bentonite. The Myogi bentonite with the lowest montmorillonite content shows the properties of low viscosity, In adsorption, strengths and a little high CEC and surface area. The high CEC and surface area of this deposit is due to the sufficient occurrence of zeolite. A strong dispersion in the Na-type bentonite and a strong flocculation in the Ca-type bentonite took place, and both the types show a slow flocculation with time. The physicochemical properties of the bentonite are mainly controlled by the montmorillonite content, interlayer cations, and impurity minerals such as zeolite. But bentonites inconsistent to this factors are sometimes occurred. This is maybe due to the crystal chemistry such as layer charge of montmorillonite and crystal morphology of montmorillonite such as aspect ratio.

Estimation of Oxygen Consumption Rate and Organic Carbon Oxidation Rate at the Sediment/Water Interface of Coastal Sediments in the South Sea of Korea using an Oxygen Microsensor (산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정)

  • Lee, Jae-Seon;Kim, Kee-Hyun;Yu, Jun;Jung, Rae-Hong;Ko, Tae-Seung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.392-400
    • /
    • 2003
  • We used an oxygen microelectrode to measure the vertical profiles of oxygen concentration in sediments located near point sources of organic matter. The measurements were carried out between 13th and 17th May, 2003, in semi-closed bay and coastal sediments in the central part of the South Sea. The measured oxygen penetration depths were extremely shallow and ranged from 1.30 to 3.80 mm. This suggested that the oxidation and reduction reactions in the early diagenesis should be studied at the mm depth scale. In order to estimate the oxygen consumption rate, we applied the one-dimension diffusion-reaction model to vertical profiles of oxygen near the sediment/water interface. Oxygen consumption rates were estimated to be between 10.8 and 27.6 mmol O$_2$ m$\^$-2/ day$\^$-1/(average: 19.1 mmol O$_2$ m$\^$-2/ day$\^$-1/). These rates showed a positive correlation with the organic carbon of the sediments. The corresponding benthic organic carbon oxidation rates calculated using an modified Redfield ratio (170/110) at the sediment/water interface were in the range of 89.5-228.1 mg C m$\^$-2/ day$\^$-1/(average: 158.0 mg C m$\^$-2/ day$\^$-1/). We suggest that these results are maximum values at the presents situation in the bay because the sampling sites were located near point sources of organic materials. This study will need to be carried out at many coastal sites and throughout the seasons to allow an understanding of the mechanisms of eutrophication e.g. the spatial distribution of oxygen consumption within the oxic zone and hypoxic conditions in the coastal sea.

Geochemical Origin, Behavior and Enrichment of Environmental Toxic Elements in Coaly Metapelite from the Deokpyeong Area, Korea (덕평지역의 탄질 변성니질암에 관한 환경적 독성원소의 지구화학적 기원, 거동 및 부화)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.553-566
    • /
    • 1997
  • Origin, behavior and enrichment of environmental toxic elements from the Deokpyeong area were investigated on the basis of major, trace and rare earth element geochemistry. Coaly metapelites of the Deokpyeong area are subdivided into grey phyllite, dark grey phyllite, coaly slate and black slate, which are interbedded along the Ogcheon Supergroup. The coaly slate had been mined for coal, but mining is closed. The coaly and black slates are lower contents of $SiO_2$ and $Al_2O_3$, and higher contents of LOI, CaO, $Na_2O$ and BaO as compared with the phyllitic rocks. Rare earth elements are highly enriched in the coaly and black slate. Average compositions (ppm) of minor and/or environmental toxic elements in the coaly and black slate are revealed as As=127, Ba=30,163, Cd=18, Cr=740, Cu=84, Mo=378, Pb=43, Sb=12, Se=44, U=144, V=8,147 and Zn=292, which are extremely high concentrations than those in the NASC compositions. Major elements (average enrichment index; 5.34) in the coaly metapelites are mostly depleted, excepting $P_2O_5$ and BaO, normalized by NASC. Rare earth elements (average enrichment index; 1.48) are enriched in the coaly slate. On the basis of NASC, minor and/or environmental toxic elements in the coaly metapelites were strongly enriched of all the elements with the exception of Co, Cs, Ni and Sr. Average enrichment index of trace elements in coaly metapelite is 31.51 (coaly slate; 51.94 and black slate; 15.46). Especially, enrichment index of potentially toxic elements (As, Ba, Cr, Cu, Mo, Ni, Sb, Se, U, V and Zn) of the rock is 46.10 (grey phyllite; 7.15, dark grey phyllite; 4.77, coaly slate; 88.96 and black slate; 22.11). These coal formations were deposited in basin of boundary between terrestrial and marine environments deduced to carbon, sulfur (C/S=2.2 to 275.7), trace and rare earth elements characteristics. Irregular behavior and dispersion between major, minor and rare earth elements of those metapelites indicates a variable source materials, incomplete mixing of differential source and/or reequilibrium of diagenesis and metamorphism.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area (문경지역 사동층, 고방산층 셰일에 대한 광물학적 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo;Kim, Young-Mi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The metamorphic environments occrrred in the Sadong and the Gobangsan formations were studied through the investigation of chloritoid and white mica in shales at Munkyung area. Two types of white mica occurs in the shale of Sadong formation; muscovite-dominant ($Mu_{76.1}Pa_{18.1}Ma_{5.8}$) and margarite-dominant ($Ma_{52.9}Mu_{31.6}Pa_{15.5}$). It is inferred that the muscovite-dominant white mica is generated by the diagenesis of Na-rich illite whereas the margarite-dominant white mica is generated by reactions between calcite and pyrophyllite separated from illite. In shales of the Gobangsan formation, chloritoids are observed with muscovite, pyrophyllite and chlorite. The chloritoids of the Gobangsan formation are considered to be originated from the reaction between pyrophyllite and chlorite. The Sadong and Gobangsan formations would have experienced the low-temperature metamorphism (anchizone) considering that white mica in general forms above the temperature of $200^{\circ}C$ and the assemblage of chloritoid-pyrophyllite-chlorite is stabilized below $280^{\circ}C$.