• Title/Summary/Keyword: Diadinoxanthin

Search Result 5, Processing Time 0.02 seconds

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Comparative Study on Microphytobenthic Pigments and Total Microbial Biomass by ATP in Intertidal Sediments (조간대 퇴적 환경에 따른 저서미세조류 색소와 총 아데노신 3인산(ATP: Adenosine-5' triphosphate) 비교 연구)

  • Ha, Sun-Yong;Choi, Bo-Hyung;Min, Jun-Oh;Jeon, Su-A;Shin, Kyung-Hoon
    • Ocean and Polar Research
    • /
    • v.35 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • Biomass and community composition of microphytobentos in tidal flats were studied by HPLC analysis and also investigated to examine the relationship between microphytobenthic pigments and Adenosine-5' triphosphate (ATP) as an index of total microbial biomass in intertidal environments (muddy and sandy sediment) of Gyeonggi Bay, west coast of Korea. Microphytobenthic pigments and ATP concentration in muddy sediment were the highest at the surface while the biomass of microphytobenthos in sandy sediment was the highest at the sub-surface (0.75 cm sediment depth). The detected pigments of microphytobenthos were chlorophyll a, b (euglenophytes), $c_3$, peridinin (dinoflagellates), fucoxanthin (diatom or chrysophytes), diadinoxanthin, alloxanthin (cryptophytes), diatoxanthin, zeaxanthin (cyanobacteria), ${\beta}$-carotein, and pheophytin a (the degraded product of chlorophyll a). Among the pigments which were detected, the concentration of fucoxanthin was the highest, indicating that diatoms dominated in the microphytobenthic community of the tidal flats. There was little significant correlation between OC (Organic Carbon) and ATP in both sediments. However, a positive correlation between chlorophyll a concentration and ATP concentration was found in sandy sediment, suggesting that microbial biomass could be affected by labile OC derived from microphytobenthos. These results provide information that may help us understand the relationship between microphytobenthos and microbial biomass in different intertidal sediment environments.

HPLC Analysis of Biomass and Community Composition of Microphytobenthos in the Saemankeum Tidal flat, West Coast of Korea (한국 서해 새만금 갯벌에서 저서미세조류의 생체량과 군집조성에 대한 HPLC 분석)

  • OH Seung-Jin;MOON Chang-Ho;PARK Mi-Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.215-225
    • /
    • 2004
  • Biomass and community composition of microphytobenthos in the Saemankeum tidal flat were studied by HPLC analysis of the photosynthetic pigments from November 2001 to November 2002. The environmental factors of sediment were also investigated to examine the relationship between microphytobenthos biomass and sedimentary environments. The detected photosynthetic pigments of microphytobenthos were chlorophyll a, b, c, fucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, diadinoxanthin, alloxanthin, diatoxanthin, zeaxanthin+lutein, peridinin and beta-carotene. Pheophytin a, the degradation product of chlorophyll a, was also detected. The results of pigmen analysis suggest the presence of diatom (fucoxanthin), euglenophytes (chlorophyll b), chlorophytes (chlorophyll b + lutein), cyanobacteria (zeaxanthin), cryptophytes (alloxanthin), chrysophytes (fucoxanthin + violaxanthin), prymnesiophytes (19'-hexanoyloxyfucoxanthin) and dinoflagellates (peridinin). Chlorophyll a concentration in the top 0.5 cm of sediment was in the range of $0.24\;mg{\cdot}m\^{-2}\;-32.11\;mg{\cdot}m\^{-2}$ in the study area. The increase of chlorophyll a concentration in the spring indicates the occurrence of a microphytobenthic bloom. In the summer, there was a sharp decrease of the chlorophyll a concentration which was probably due to high grazing activity by macrobenthos. The annual mean chlorophyll a concentration in the study area was low compared to that in most of other tidal flat areas probably due to active resuspension of microphytobenthos and high grazing activity by macrobenthos. There was no clear relationship between microphytobenthos biomass and sedimentary environments because of a large variety of physical, chemical and biological factors, Pigment analysis indicated that while diatoms were dominated in the microphytobenthic community of the Geojon tidal flat, euglenophytes and/or chlorophytes coexisted with diatoms in the Mangyung River tidal flat.

Analysis on the Pigment Composition of Phytoplankton Assemblages using HPLC (High Performance Liquid Chromatography) in the Adjacent Waters of Nuclear Power Plants in Spring

  • Choi, Hyu-Chang;Kang, Yeon-Shik;Choi, Joong-Ki;Song, Tae-Yoon;Yoo, Man-Ho
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.234-242
    • /
    • 2004
  • The pigment composition and concentration of phytoplankton assemblages using HPLC in the adjacent waters of four nuclear power plants (Yonggwang, Kori, Wolsong and Ulchin) were investigated during the spring blooming in 2004. The mean concentration of chlorophyll a ranged from 563.8 to 2,949.0ng $l^{-1}$, with the lowest concentration at Kori and the highest concentration at Wolsong. Among the carotenoids, the amounts of fucoxanthin and chlorophyll $C_2$ were relatively higher than those of other pigments in the study site. As minor pigments, zeaxanthin, chlorophyll b, 19'-butanoyloxyfucoxanthin, diadinoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll $C_3$ and peridinin were detected. The results of pigment composition and concentration showed that diatoms had an important proportion of phytoplankton community when a spring bloom occurred. Cyanobacteria was present relatively low density at the Wolsong and the green alga such as chlorophytes and prasinophytes were abundant at the Yonggwang and Kori, while dinoflagellates characterized by peridinin were common at Ulchin and Kori. The pigment composition and concentration of phytoplankton after passing through the cooling-water system of nuclear power plant were highly variable. No distinct trend of the change of each pigment composition and amount was detected but the variation of fucoxanthin and chlorophyll $C_2$ highly coupled with that of chlorophyll a. We pointed out that the diatom controlled the overall variation of phytoplankton biomass during the spring season.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.