• Title/Summary/Keyword: Di-n-Butyl Ether

Search Result 3, Processing Time 0.018 seconds

Etherification of n-Butanol to Di-n-Butyl Ether over H3+xPW12-xNbxO40 (x=0, 1, 2, 3) Keggin and H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson Heteropolyacid Catalysts (Keggin형 H3+xPW12-xNbxO40 (x=0, 1, 2, 3) 및 Wells-Dawson형 H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) 헤테로폴리산 촉매를 이용한 n-Butanol로부터 Di-n-Butyl Ether의 제조)

  • Kim, Jeong Kwon;Choi, Jung Ho;Yi, Jongheop;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.251-256
    • /
    • 2012
  • Etherification of n-butanol to di-n-Butyl Ether was carried out over Keggin $H_{3+x}PW_{12-x}Nb_xO_{40}$ (x=0, 1, 2, 3) and $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ (x=0, 1, 2, 3) Wells-Dawson heteropolyacid catalysts. Niobium-substituted Keggin and Wells-Dawson heteropolyacid catalysts with different niobium content were prepared. Successful preparation of the catalysts was confirmed by FT-IR, ICP-AES, and $^{31}P$ NMR analyses. Their acid properties were determined by $NH_3$-TPD (Temperature-Programmed Desorption) measurements. Heteropolyacid catalysts showed different acid properties depending on niobium content in both series. The correlation between acid properties of heteropolyacid catalysts and catalytic activity was then established. Acidity of Keggin and Wells-Dawson heteropolyacid catalysts decreased with increasing niobium content, and conversion of n-butanol and yield for di-n-butyl ether increased with increasing acidity of the catalysts, regardless of the identity of heteropolyacid catalysts (without heteropolyacid structural sensitivity). Thus, acidity of heteropolyacid catalysts served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-Butyl Ether.

The Characteristics of Emission on Simultaneous Application with Biodiesel, Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine (DI 디젤기관에서 바이오디젤유와 함산소연료(EGBE) 동시적용 및 EGR에 의한 배기배출특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.143-148
    • /
    • 2010
  • In this study, the potential possibility of biodiesel fuel(BDF) and oxygenated fuel(ethylene glycolvmono-n-butyl ether; EGBE) was investigated as an effective method of decreasing the smoke emission. The smoke emission of blending fuel (BDF and EGBE 0~20 vol-%) was reduced in comparison with diesel fuel and it was reduced approximately 64% at 2000 rpm, full load in the 20% of blending rate. But torque and brake specific energy consumption( BSEC) didn't have no large differences. Also, the effects of exhaust gas recirculation(EGR) for the reduction of NOx emission has been investigated. Consequently, It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF(90 vol-%) and EGBE(10 vol-%) blended fuel and cooled EGR method(5~10%).

An Experimental Study on Usability of Oxygenated Fuel(EGBE) and EGR in a DI Diesel Engine (DI 디젤기관에서 함산소연료(EGBE)와 EGR의 유용성에 관한 실험적 연구)

  • Choi, Seung-Hun;Hwang, Yun-Taig;Kim, Woo-Sang;Oh, Young-Taig
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1697-1702
    • /
    • 2003
  • In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated for a direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenated blended fuel which has seven kinds of mixed ratio. And, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission have been investigated. Ethylene glycol mono-n-butyl ether(EGBE) contains oxygen component 27% in itself, and it is a kind of effective oxygenated fuel of mono-ether group that the smoke emission of EGBE blended fuel is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in a diesel engine. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel and cooled EGR method.

  • PDF