DOI QR코드

DOI QR Code

Etherification of n-Butanol to Di-n-Butyl Ether over H3+xPW12-xNbxO40 (x=0, 1, 2, 3) Keggin and H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) Wells-Dawson Heteropolyacid Catalysts

Keggin형 H3+xPW12-xNbxO40 (x=0, 1, 2, 3) 및 Wells-Dawson형 H6+xP2W18-xNbxO62 (x=0, 1, 2, 3) 헤테로폴리산 촉매를 이용한 n-Butanol로부터 Di-n-Butyl Ether의 제조

  • Kim, Jeong Kwon (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Choi, Jung Ho (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yi, Jongheop (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Song, In Kyu (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • 김정권 (서울대학교 공과대학 화학생물공학부) ;
  • 최정호 (서울대학교 공과대학 화학생물공학부) ;
  • 이종협 (서울대학교 공과대학 화학생물공학부) ;
  • 송인규 (서울대학교 공과대학 화학생물공학부)
  • Received : 2011.09.19
  • Accepted : 2011.10.10
  • Published : 2012.04.01

Abstract

Etherification of n-butanol to di-n-Butyl Ether was carried out over Keggin $H_{3+x}PW_{12-x}Nb_xO_{40}$ (x=0, 1, 2, 3) and $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ (x=0, 1, 2, 3) Wells-Dawson heteropolyacid catalysts. Niobium-substituted Keggin and Wells-Dawson heteropolyacid catalysts with different niobium content were prepared. Successful preparation of the catalysts was confirmed by FT-IR, ICP-AES, and $^{31}P$ NMR analyses. Their acid properties were determined by $NH_3$-TPD (Temperature-Programmed Desorption) measurements. Heteropolyacid catalysts showed different acid properties depending on niobium content in both series. The correlation between acid properties of heteropolyacid catalysts and catalytic activity was then established. Acidity of Keggin and Wells-Dawson heteropolyacid catalysts decreased with increasing niobium content, and conversion of n-butanol and yield for di-n-butyl ether increased with increasing acidity of the catalysts, regardless of the identity of heteropolyacid catalysts (without heteropolyacid structural sensitivity). Thus, acidity of heteropolyacid catalysts served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-Butyl Ether.

Keggin형 $H_{3+x}PW_{12-x}Nb_xO_{40}$(x=0, 1, 2, 3) 및 Wells-Dawson형 $H_{6+x}P_2W_{18-x}Nb_xO_{62}$(x=0, 1, 2, 3) 헤테로폴리산(Heteropolyacid) 촉매를 이용하여 n-Butanol의 에테르화(Etherification) 반응을 통한 Di-n-Butyl Ether의 제조를 수행하였다. 먼저 Niobium이 서로 다른 비율로 치환된 Keggin형 및 Wells-Dawson형 헤테로폴리산 촉매를 제조하였다. FT-IR, ICP-AES 및 $^{31}P$ NMR 분석을 통하여 촉매가 잘 제조되었음을 확인하였다. $NH_3$-TPD(Temperature-Programmed Desorption) 분석을 통해 헤테로폴리산 촉매의 산특성을 측정하였다. 두 계열의 촉매군에서 헤테로폴리산 촉매는 Niobium의 함량에 따라 다른 산특성을 나타내었다. 이후, 헤테로폴리산 촉매를 에테르화 반응에 적용하고 촉매의 반응활성과 산특성 간의 상관관계를 분석하였다. Keggin형 $H_{3+x}PW_{12-x}Nb_xO_{40}$ 및 Wells-Dawson형 $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ 헤테로폴리산 촉매의 Acidity는 Keggin형과 Wells-Dawson형 모두에서 Niobium의 치환량이 증가함에 따라 감소하였으며, n-Butanol의 전환율과 Di-n-Butyl Ether로의 수율은 헤테로폴리산 촉매의 구조와 관계없이 Acidity가 증가함에 따라 선형적으로 증가하였다. 이처럼 헤테로폴리산의 Acidity는 n-Butanol의 에테르화(Etherification) 반응을 통한 Di-n-Butyl Ether의 제조 반응에서 촉매 활성을 결정하는 중요한 요소로 작용하였다.

Keywords

Acknowledgement

Supported by : 환경부

References

  1. Tejero, J., Fite, C., Iborra, M., Izquierdo, J. F., Cunill, F. and Bringue, R., "Liquid-phase Dehydrocondensation of 1-Pentanol to Di-n-pentyl ether (DNPE) over Medium and Large Pore Acidic Zeolites," Microporous Mesoporous Mater., 117(3), 650-660(2009). https://doi.org/10.1016/j.micromeso.2008.08.055
  2. Patrini, R. and Marchinonna, M., US Patent 0159341 (2003).
  3. Golibkov, A., WO Patent 01/018154(2001).
  4. Alaoui, F. E. M., Montero, E. A., Bazile, J. -P., Aguilar, F. and Bonded, C., "Liquid Density of Biofuel Additives: 1-Butoxybutane at Pressures up to 140 MPa and from (293.15 to 393.15) K," J. Chem. Eng. Data, 56(3), 595-600(2011). https://doi.org/10.1021/je101286a
  5. Xu, M., Lunsford, J. H., Goodman, D. W. and Bhattacharyya, A., "Synthesis of Dimethyl Ether (DME) from Methanol over Solid-acid Catalysts," Appl. Catal. A, 149(2), 289-301(1997). https://doi.org/10.1016/S0926-860X(96)00275-X
  6. Woodhouse, J. C., US Patent 2014408(1935).
  7. Golay, G., Kiwi-Minsker, L., Doeppwe, A. and Renken, A., "Influence of the Catalyst Acid/base Properties on the Catalytic Ethanol Dehydration under Steady State and Dynamic Conditions. In situ Surface and Gas-phase Analysis," Chem. Eng. Sci., 54(15-16), 3593-3598(1999). https://doi.org/10.1016/S0009-2509(98)00521-1
  8. Patrini, R. and Marchinonna, M., US Patent 6218583(2001).
  9. Makarova, M. A., Paukshtis, E. A., Thomas, J. M., Williams, C. and Azamaraev, K. I., "Dehydration of n-Butanol on Zeolite HZSM-5 and Amorphous Aluminosilicate: Detailed Mechanistic Study and the Effect of Pore Confinement," J. Catal., 149(1), 36-51(1994). https://doi.org/10.1006/jcat.1994.1270
  10. Makgoba, N. P., Sakuneka, T. M., Schalkwyk, C., Botha, M. and Nicolaides, C. P., "Silication of ${\gamma}$-alumina Catalyst during the Dehydration of Linear Primary Alcohols," Appl. Catal. A, 297(2), 145-150 (2006). https://doi.org/10.1016/j.apcata.2005.09.003
  11. Berteau, P., Checkiewicz, S. and Delmon, B., "Role of the Acidbase Properties of Aluminas, Modified ${\gamma}$-Alumina, and Silica-Alumina in 1-Butanol Dehydration," Appl. Catal., 31(2), 361-383 (1987). https://doi.org/10.1016/S0166-9834(00)80702-2
  12. Mizuno, N. and Misono, M., "Heterogeneous Catalysis," Chem. Rev., 98(1), 199-218(1998). https://doi.org/10.1021/cr960401q
  13. Youn, M. H., Park, D. R., Jung, J. C., Kim, H., Barteau, M. A. and Song, I. K., "Reduction Potentials of Heteropolyacid Catalysts Probed by Scanning Tunneling Microscopy and UV-visible Spectroscopy," Korean J. Chem. Eng., 24(1), 51-54(2007). https://doi.org/10.1007/s11814-007-5008-1
  14. Song, I. K. and Barteau, M. A., "Scanning Tunneling Microscopy (STM) and Tunneling Spectroscopy(TS) of Heteropolyacid(HPA) Self-assembled Monolayers(SAMS): Connecting Nano Properties to Bulk Properties," Korean J. Chem. Eng., 19(4), 567-573 (2002). https://doi.org/10.1007/BF02699297
  15. Shikata, S., Okuhara, T. and Misono, M., "Catalysis by Hetropoly Compounds. Part XXVI. Gas Phase Synthesis of Methyl tert-Butyl Ether over Heteropolyacids," J. Mol. Catal. A: Chem., 100(1-3), 49-59(1995). https://doi.org/10.1016/1381-1169(95)00128-X
  16. Baronetti, G., Thomas, H. and Querini, C. A., "Wells-Dawson Heteropolyacid Supported on Silica: Isobutane Alkylation with C4 Olefins," Appl. Catal. A, 217(1-2), 131-141(2001). https://doi.org/10.1016/S0926-860X(01)00576-2
  17. Pope, M. T., Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin Heidelberg, New York, 15-32(1983).
  18. Park, D. R., Song, S. H., Hong, U. G., Seo, J. G., Jung, J. C. and Song, I. K., "Redox Properties and Catalytic Oxidation Activities of Polyatom-substituted $H_nPW_{11}M_1O_{40}$(M=V, Nb, Ta, and W) Keggin Heteropolyacid Catalysts," Catal. Lett., 132(3-4), 363-369(2009). https://doi.org/10.1007/s10562-009-0114-9
  19. Park, D. R., Choi, J. H., Park, S. Y. and Song, I. K., " Reduction Potential, UV-visible Absorption Edge Energy, and Oxidation Catalysis of Niobium-contaning $H_{3+x}PW{12-x}Nb_xO_{40}$ Keggin and $H_{6+x}P_2W_{18-x}Nb_xO_{62}$ Wells-Dawson Heteropolyacid Catalysts," Appl. Catal. A, 394(1-2), 201-208(2011). https://doi.org/10.1016/j.apcata.2010.12.042
  20. Okumura, K., Yamashita, K., Yamada, K. and Niwa, M., "Studies on the Identification of the Heteropoly Acid Generated in the $H_3PO_4-WO_3-Nb_2O_5$ Catalyst and its Thermal Transformation Process," J. Catal., 245(1), 75-83(2007). https://doi.org/10.1016/j.jcat.2006.09.021
  21. Massart, R., Contant, R., Fruchart, J.-M., Ciabrini, J.-P. and Fournier, M., "$^{31}P$ NMR Studies on Molybdic and Tungstic Heteropolyanions. Corrleation between Structure and Chemical Shift," Inorg. Chem., 16(11), 2196-2920(1977).
  22. Hornstein, B. J. and Finke, R. G., "The Lacunary Polyoxoanion Synthon ${\alpha}-P_2W_{15}O_{56}\;^{12−}$: An Investigation of the Key Variables in its Synthesis plus Multiple Control Reactions Leading to a Reliable Synthesis," Inorg. Chem., 41(10), 2720-2730(2002). https://doi.org/10.1021/ic020033a
  23. Choi, J. H., Kim, J. K., Park, D. R., Park, S. Y., Yi, J. H. and Song, I. K., "Etherification of n-Butanol to Di-n-Butyl Ether over $H_3PMo_{12-x}W_xO_{40}$ (x=0, 3, 6, 9, 12) Keggin and $H_6P_2Mo_{18-x}W_xO_{62}$ (x=0, 3, 9, 15, 18) Wells-Dawson Heteropolyacid Catalysts," Catal. Commun., 14(1), 48-51(2011). https://doi.org/10.1016/j.catcom.2011.07.018
  24. Rocchiccioli-Deltcheff, C., Thouvenot, R. and Franck R., "Spectres i.r. et Raman d'Heteropolyanions ${\alpha}-XM_{12}O_{40}\;^n$ de Structure de Type Keggin $(X=B^{III},\;Si^{IV},\;Ge^{IV},\;P^{V},\;As^{V}\;et\;M=W^{VI}\;et\;Mo^{VI})$," Spectrochim. Acta., 32(3), 587-597(1976). https://doi.org/10.1016/0584-8539(76)80121-3
  25. Comuzzi, C., Dolcetti, G., Trovarelli, A., Cavani, F., Trifiro, F., Llorca, J. and Finke, R. G., "The Solid-State Rearrangement of the Wells-Dawson $K_6P_2W_{18}O_{62}{\cdot}10H_2O$ to a Stable Keggin-type Heteropolyanion Phase: A Catalyst for the Selective Oxidation of Isobutane to Isobutene," Catal. Lett., 36(1-2), 75-79(1996). https://doi.org/10.1007/BF00807208
  26. Okuhara, T., Mizuno, N. and Misono, M., "Catalytic Chemistry of Heteropoly Compound," Adv. Catal., 41, 113-252(1996). https://doi.org/10.1016/S0360-0564(08)60041-3
  27. Lee, K. Y., Arai, T., Nakata, S., Asaoka, S., Okuhara, T. and Misono, M., "Catalysis by Heteropoly Compounds. 20. An NMR Study of Ethanol Dehydration in the Pseudoliquid Phase of 12-Tungstophosphoric Acid," J. Am. Chem. Soc., 114(8), 2836-2842 (1992). https://doi.org/10.1021/ja00034a013
  28. Himeno, S., Takamoto, M. and Ueda, T., "Formation of ${\alpha}$- and ${\beta}$- Keggin-Type [PW12O40]3− Complexes," Bull. Chem. Soc. Jpn., 78, 1463-1468(2005). https://doi.org/10.1246/bcsj.78.1463
  29. Okuhara, T., Kasai, A., Hayakawa, N., Misono, M. and Yoneda, Y., "The Important Role of The Bulk of 12-Tungustophosphoric Acid in the Catalytic Dehydration of Alcohol to Olefins," Chem. lett., 391-394(1981).