• Title/Summary/Keyword: Di-methyl Ether

Search Result 51, Processing Time 0.025 seconds

LPG-DME Compression Ignition Engine with Intake Variable Valve Timing (LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

Synthesis and Cationic Polymerization of Multifunctional Vinyl Ethers Containing Dipolar Electronic Systems

  • 이주연;김지향;김민정
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.307-313
    • /
    • 1999
  • 2,4-Di-(2'-vinyloxyethoxy)benzylidenemalononitrile (la), methyl 2,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (lb), 3,4-di-(2'-vinyloxyethoxy)benzylidene malononitrile (2a), methyl 3,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 2,5-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (3a), methyl 2,5-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (3b), 2,3-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 2,3-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 2,4-di-(2'-vinyloxyethoxy)benzaldehyde, 3,4-di-(2'-vinyloxyethoxy)benzaldehyde, 2,5-di-(2'-vinyloxyethoxy) benzaldehyde, and 2,3-di-(2'-vinyloxyethoxy)benzaldehyde with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 1-4 were polymerized readily with boron trifluoride etherate as a cationic initiator to give optically transparent swelling poly(vinyl ethers) 5-8 havina oxybenzylidenemalononitrile and oxycyanocinnamate, which is presumably effective chromophore for second-order nonlinear optical applications. Polymers 5-8 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymers 5-8 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for electrooptic device applications.

Synthesis of Highly Crosslinked Temperature-resistant Poly(vinyl ethers) by Free Radical Polymerization

  • 이주연;김지향
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.8
    • /
    • pp.851-856
    • /
    • 1998
  • 2,4-Di-(2-vinyloxyethoxy)benzylidenemalononitrile (2a), methyl 2,4-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (2b), 3,4-di-(2-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 3,4-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b), 2,5-di-(2-vinyloxyethoxy)benzylidenemalononitrile (6a), and methyl 2,5-di-(2-vinyloxyethoxy)benzylidenecyanoacetate (6b) were prepared by the condensation of 2,4-di-(2-vinyloxyethoxy)benzaldehyde (1), 3,4-di-(2-vinyloxyethoxy)benzaldehyde (3), and 2,5-di-(2-vinyloxyethoxy)benzaldehyde (5) with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 2, 4 and 6 were polymerized readily by free radical initiators to give optically transparent swelling poly(vinyl ethers) 7-9. Polymers 7-9 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymer 7-9 showed a thermal stability up to 300 ℃ in TGA thennograms.

New Dimeric Phenolic Conjugates from the Wood of Tamarix tetragyna

  • Hussein, Sahar A.M.
    • Natural Product Sciences
    • /
    • v.3 no.2
    • /
    • pp.127-134
    • /
    • 1997
  • Two new dimeric phenolic conjugates, 2,3-di-O-dehydrodigallicmonocarboxyl-$({\alpha},{\beta})$-$^4C_1$-glucopyranose and ellagic acid 3,3'-dimethylether-4-0-$SO_3K$ were isolated from the debarked heart wood of Tamarix tetragyna (Tamaricaceae) along with the known phenolic compounds, isoferulic acid, ferulic acid, gallic acid, gallic acid 4-methyl ether, syringic acid, ellagic acid 3,3'-dimethyl ether and ellagic acid. All structures were determined mostly by ESI-MS, ID and 2D-NMR spectroscopy.

  • PDF

Current Status and Technical Development for Di-Methyl Ether as a New and Renewable Energy (신재생 에너지로서 DME 기술개발 현황)

  • Cho, Wonjun;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Fuels based on petroleum will eventually run out in the near future. DME (Di-methyl Ether) is a clean energy source that can be manufactured from various raw materials such as natural gas, coal as well as biomass. As DME has no carbon-carbon bond in its molecular structure and is an oxygenate fuel, its combustion essentially generates no soot as well as no SOx. Because the physical properties of DME are similar to those of LPG, the LPG distribution infrastructure can be converted to use with DME. DME has such high cetane number of 55~60 that it can be used as a diesel engine fuel. Practical use of DME as a next-generation clean fuel or next-generation chemical feedstock is advancing in the fields of power generation, diesel engines, household use, and fuel cells, among others. The purpose of this paper is review the characteristics, standardization, status of research and development in domestic and foreign countries of DME.

Steric Hindrance in the Free Radical Polymerization of Aryloxyethyl Vinyl Ethers Containing Electron-Deficient Olefin Groups$^{\dag}$

  • Lee, Ju Yeon;Jin, Mi Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.613-617
    • /
    • 2000
  • p-(2-Vinyloxyethoxy)benzylidenemalononitrile (4a), methyl p-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b), 3,5-dimethoxy-4-(2'-vinyloxyethoxy)benzylidenemalononitrile (5a), methyl 3,5-dimethoxy-4-(2'-vinyloxy-ethoxy) benzylidenecyanoacetate (5 b), o-(2 -vinyloxyethoxy)benzylidenemalononitrile (6a), methyl o-(2-viny-Ioxyethoxy) benzylidenecyanoacetate (6b), 1,3-di-(2',2'-dicyanovinyl)-5-methyl-2-(2'-vinyloxyetioxy)benzene (7a), l,3-di-(2'-carbomethoxy-2'-cyanovinyl)-5-methyl-2-(2'-vinyloxyethoxy)benzene (7b), 2,3,4-tri-(2'-viny-Ioxyethoxy) benzylidenemalononitrile (8a), methyl 2,3,4-tri-(2'-vinyloxyethoxy)benzylidenecyanoacetate (8b), 2,4,6-tri-(2'-vinyloxyethoxy)benzylidenemalononitrile (9a), and methyl 2,4,6-tri-(2'-vinyloxyethoxy)benzyl-idenecyanoacetate(9b) were prepared by the condensation of the corresponding benzaldehyde 1-3 with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 4, 6, and 8 polymerized readily with radical initiators to yield crosslinked polymers 10, 12, and 14. However, compounds 5, 7, and 9 were inert to radical initiators due to the steric hindrance. The resulting polymers 10, 12, and 14 were not soluble in common solvents showing a thermal stability up to $300^{\circ}C$.

Sulphated Flavonols of the Flowers of Tamarix amplexicaulis

  • Souleman, Ahmed M.A.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.215-220
    • /
    • 1998
  • A new flavonol $3,5-di-O-KSO_3$:kaempferol 7,4'-dimethyl ether $3,5-O-KSO_3$, was isolated and identified from the flowers of Tamarix amplexicaulis. The known compounds quercetin $3-mono-O-KSO_3$, kaempferol 4'-methyl ether $3-mono-O-KSO_3$, kaempferol 7,4'-dimethyl ether $3-O-KSO_3$, quercetin 7,4'-dimethyl ether $3-mono-O-KSO_3$, kaempferol 3-O-glucuronide and quercetin 3-O-glucuronide were also separated and identified. Structures were established by conventional methods, including electrophoretic analysis, and confirmed by negative FAB-MS, $^1H-\;and\;^{13}C-NMR$.

  • PDF

Analysis of Fixed Bed Reactor for the synthesis of DME from METHANE (천연가스를 이용한 DME 합성 고정층 촉매 반응기 해석)

  • Yoon En Sup;Lee Shin Beom;Ahn Sung Joon;Cho Byoung Hak;Cho Won Il;Baek Young Soon;Park Dal Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.42-49
    • /
    • 2004
  • We study on and simulate the behavior of one-step fixed bed reactor which synthesize DiMethylEther(DME) from Methane. At last, we know that reaction is decreased in case of excess and no cooling because the temperature of reactor is decreased or increased seriously. Also, we study on optimizing the reactor so that we know the optimized operation condition according to cooling effect, space velocity of reactant and temperature of reactant, etc.

  • PDF

Synthesis and Photopolymerization Characterization of Propenyl Ether Monomers (프로페닐 에테르 단량체들의 합성과 광중합 특성)

  • Kim, Ki-Sang;Shim, Sang-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • The propenyl ether-type monomers which are applicable for cationic photo-polymerization were synthesized by the condensation reaction of mono and di-functional alcohol with allyl bromide. To examine photo-curable reactivity, these monomers were combined with cationic photoinitiator to prepare coating composition. As a result, the initial rate of polymerization of POMB in mono propenyl ether type was 10.2, which was relatively lower than BPOB in di-propenyl ethers type. However, POMB containing 1.5mol% photoinitiator almost quantitatively reacted within 90 seconds. In addition, Sulfonium salt type photo-initiators containing long-alkyl group showed good solubility with monomers and apperaed to have comparatively higher rate of polymerization and conversion ratio when applying DPSA and DPST which have high acidity on all monomers.