Abstract
p-(2-Vinyloxyethoxy)benzylidenemalononitrile (4a), methyl p-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b), 3,5-dimethoxy-4-(2'-vinyloxyethoxy)benzylidenemalononitrile (5a), methyl 3,5-dimethoxy-4-(2'-vinyloxy-ethoxy) benzylidenecyanoacetate (5 b), o-(2 -vinyloxyethoxy)benzylidenemalononitrile (6a), methyl o-(2-viny-Ioxyethoxy) benzylidenecyanoacetate (6b), 1,3-di-(2',2'-dicyanovinyl)-5-methyl-2-(2'-vinyloxyetioxy)benzene (7a), l,3-di-(2'-carbomethoxy-2'-cyanovinyl)-5-methyl-2-(2'-vinyloxyethoxy)benzene (7b), 2,3,4-tri-(2'-viny-Ioxyethoxy) benzylidenemalononitrile (8a), methyl 2,3,4-tri-(2'-vinyloxyethoxy)benzylidenecyanoacetate (8b), 2,4,6-tri-(2'-vinyloxyethoxy)benzylidenemalononitrile (9a), and methyl 2,4,6-tri-(2'-vinyloxyethoxy)benzyl-idenecyanoacetate(9b) were prepared by the condensation of the corresponding benzaldehyde 1-3 with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 4, 6, and 8 polymerized readily with radical initiators to yield crosslinked polymers 10, 12, and 14. However, compounds 5, 7, and 9 were inert to radical initiators due to the steric hindrance. The resulting polymers 10, 12, and 14 were not soluble in common solvents showing a thermal stability up to $300^{\circ}C$.