• Title/Summary/Keyword: Di-methyl Ether(DME)

Search Result 35, Processing Time 0.018 seconds

Development of DME Engine Using 3.9 Liter Diesel Engine with Mechanical Type Fuel System (3.9 리터 기계식 디젤 엔진을 이용한 DME 엔진 개발 연구)

  • JANG, JINYOUNG;WOO, YOUNGMIN;KIM, GANGCHUL;CHO, CHONGPYO;JUNG, YONGIN;KO, AHYUN;PYO, YOUNGDUG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • The 3.9 liter diesel engine with a mechanical fuel injection system was converted to di-methyl ether (DME) engine and performance optimized. In order to switch to the DME engine, the plunger of the high pressure fuel pump was replaced and the diameter of the injector nozzle was increased. Through this, the disadvantage of DME having low calorific value per volume can be compensated. To optimize the performance, the number of injector nozzle holes, injector opening pressure, and fuel injection timing were changed. As a result, the optimum number of injector nozzle holes was 5, the injector opening pressure was from 15 MPa to 18 MPa, and the injection timing was 15 crank angle degree before top dead center (CAD BTDC). The power was at the same level as the base diesel engine and nitrogen oxides (NOx) emissions could be reduced.

Study on the Optimum Design of High Pressure Common-rail DME Injector Nozzle with Consideration of Cavitation (공동현상을 고려한 커먼레일용 고압 DME 인젝터 노즐의 최적 설계 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • DME (Di-Methyl Ether) is synthetic product that is produced through dehydration of methanol or a direct synthesis from syngas. And it is able to save fossil fuel and reduce pollutants of emission such as PM and $CO_2$. In spite of its advantages it is difficult to design DME fuelled engine system because DME fuel may cause to severely generate cavitation and corrosion in fuel delivery system due to physical properties of DME. Therefore, in this study three-dimensional internal flow characteristics with consideration of cavitation were predicted in the DME injector using diesel and DME fuel. Moving grid technique was employed to describe needle motion and 1-D hydraulic simulation of injector was also simulated to obtain transient needle motion profiles. The results of simulation show that cavitations was generated at the inlet of nozzle near high velocity region both diesel and DME. And mass flow rate of DME is reduced by 4.73% compared to that of diesel at maximum valve lift because cavitation region of DME is much more larger. To increase flow rate of DME injector, internal flow simulation has been conducted to investigate the nozzle hole inner R-cut effect. The flow rates of diesel and DME increase as R-cut increases, and flow coefficient of DME fuel injector was increased by 6.3% on average compared with diesel fuelled injector. Finally, optimum shape of DME injector nozzle is suggested through the comparison of flow coefficient with variation of nozzle hole inner R-cut.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

Effect of the Fuel Stratification on the Operating Range for a DME HCCI Engine based on Numerical Analysis (농도성충화가 DME HCCI 엔진의 운전 영역 확장에 미치는 영향에 관한 수치해석 연구)

  • Kwon, O-Seok;Jeong, Dong-Won;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • The operating range of HCCI engine is narrow due to excessive rate of pressure rise on high load. The fuel stratification is proposed to solve the problem. The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion and to investigate that the operating range is expanded for fuel stratification in the preceding condition of initial temperature and equivalence ratios. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. The computations were conducted using SENKIN application of the CHEMKINll kinetics rate code. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate.

Numerical Analysis for Booster Effect in DME HCCI Engine with Fuel Stratification (연료의 불균질성을 갖는 DME HCCI엔진에서 과급의 효과에 관한 수치해석)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2010
  • The purpose of this study is to gain a better understanding of the effects of fuel stratification on reducing the pressure-rise rate at high load in HCCI combustion. It was found that fuel stratification offers good potential to achieve a staged combustion event and reduced pressure-rise rates. The engine is fueled with Di-Methyl Ether (DME) which has unique 2-stage heat release. Numerical analysis is conducted with single and multi-zones model and detailed chemical reaction scheme is done by chemkin and senkin. Calculation result shows that proper fuel stratification prolongs combustion duration and reduce pressure rise rate. Besides IMEP, combustion efficiency and indicated thermal efficiency keep constant. However, too wide fuel stratification increases pressure rise rate and CO and NOx emissions in exhaust gas.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

Emissions and Combustion Characteristics of LPG HCCI Engine (LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

Gasification of woody biomass in a fluidized bed reactor (유동층 반응기에서 목질계 바이오매스의 가스화반응)

  • Kim, Seung-Soo;Kim, Jinsoo;Seo, Young-Hoon;Cho, Won-Jun;Baek, Young-Soon;Song, Taek-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.102.1-102.1
    • /
    • 2010
  • 바이오매스(Biomass)는 지구상에서 에너지원으로 이용될 수 있는 모든 식물과 미생물을 총칭하는 의미로 사용된다. 최근 바이오매스를 에너지자원화 시키는 방법으로 주목받는 열화학적 전환(Thermo-chemical conversion) 반응은 산소가 없이 혹은 희박한 조건에서 바이오매스에 열과 압력을 가하거나 공기나 수증기 등의 가스화제와 반응하여 바이오오일(Bio-oil) 및 합성가스(Syngas)로 변화하는 프로세스를 의미한다. 바이오매스로부터 바이오 DME(Di-Methyl Ether) 생산을 위한 합성가스를 제조하기 위해서 국내 산림자원을 대상으로 열분해반응 특성연구를 수행하였다. 또한 이들 물질로부터 바이오 DME 합성을 위해 최적의 합성가스 제조를 위한 타당성 연구를 수행하였다. 반응온도 $800{\sim}900^{\circ}C$에서 가스화 수율은 78~80%, 촤 수율은 17~20%, 타르 수율은 4~10%였고, 합성가스($H_2$/CO)비는 0.9~1.6였다.

  • PDF

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.